

CS 151: Reasoning with Knowledge and Probability Theory (Review?)

Admin

- Will have mancala tournament soon
- · Assignment 3 is out

How's the class going?

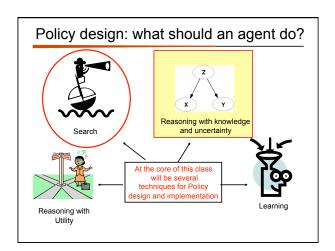
- Key comment: not enough work ©
- · Pacing seems ok
 - as a warning, the topics will get a bit more advanced as we go forward
- favorite topic: CSPs
 - maybe because you guys couldn't remember other things we had talked about?
- · Other comments
 - current research problems
 - look at written problems in class
 - examples outside the book

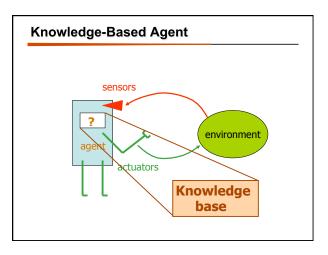
Human agents

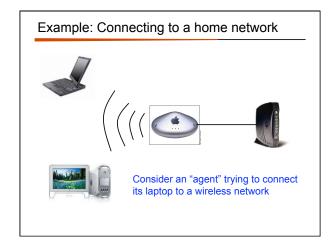
- How do humans represent knowledge?
 - ontologies
 - scripts
- How do humans reason/make decisions?
 - logic
 - probability
 - utility/cost-benefit
 - two decision systems: intuition/reasoning
 - http://www.princeton.edu/~kahneman/

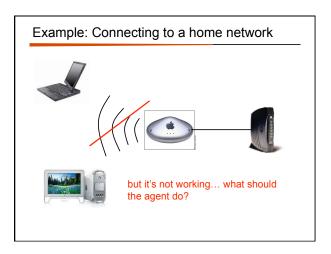
An example

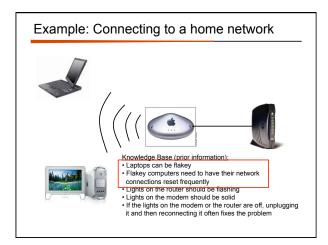
- A bat and a ball together cost \$1.10. The bat costs a dollar more than the ball. How much does the ball cost?
- Your first guess is often wrong...

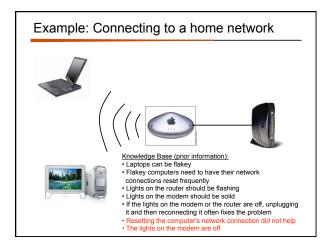












How do we represent knowledge?

- Procedurally (HOW):
 - Write methods that encode how to handle specific situations in the world
 - chooseMoveMancala()
 - driveOnHighway()
- Declaratively (WHAT):
 - Specify facts about the world
 - Two adjacent regions must have different colors
 - If the lights on the modem are off, it is not sending a signal
 - Key is then how do we reason about these facts

Logic for Knowledge Representation

Logic is a declarative language to:

- Assert sentences representing facts that hold in a world W (these sentences are given the value true)
- Deduce the true/false values to sentences representing other aspects of W

Propositional logic

Four children have different favorite dinosaurs. Find out who likes which

	T. rex	Stegosaurus	Velociraptor	Triceratops
Amy				
Bob				
Cal				
Deb				

- 1. Bob's favorite dinosaur does not have an "x" in its name.
- 2. Amy only likes dinosaurs that walk on four legs.
- 3. Neither Cal's nor Amy's favorite dinosaur has triangular plates along its back.
- 4. Bob's favorite dinosaur is a meat-eater.

Propositional logic

Four children have different favorite dinosaurs. Find out who likes which dinosaur.

	T. rex	Stegosaurus	Velociraptor	Triceratops
Amy				
Bob				
Cal				
Deb				

- 1. Bob's favorite dinosaur does not have an "x" in its name.
- 2. Amy only likes dinosaurs that walk on four legs.
- 3. Neither Cal's nor Amy's favorite dinosaur has triangular plates along its back.
- 4. Bob's favorite dinosaur is a meat-eater.

T.Rex has an x in it

Stegasaurus and Triceritops walk on 4 legs T.Rex and Velociraptors eat meat

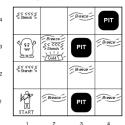
Bob likes Amy

Hunt the Wumpus

- Invented in the early 70s (i.e. the "good old days" of computer science)
 - originally command-line (think black screen with greenish text)

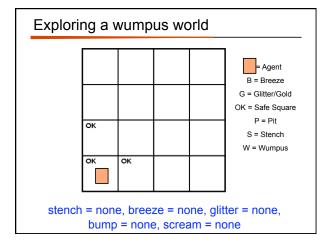
The Wumpus World (as defined by the book)

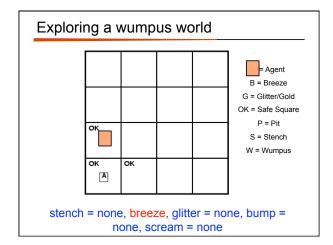
- · Performance measure
 - gold +1000, death -1000 (falling into pit or eaten by wumpus)
 - -1 per step, -10 for using the arrow
- Environment
- 4x4 grid of rooms
- Agent starts in [1,1] facing right
 gold/wumpus squares randomly
- chosen Any other room can have a pit (prob = 0.2)
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

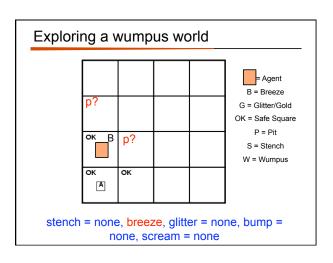


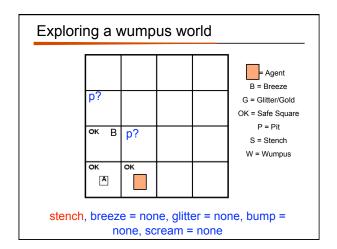
Wumpus world characterization

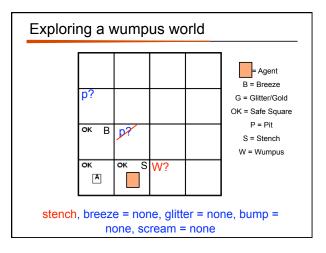
- Fully Observable?
 - No... until we explore, we don't know things about the world
- Deterministic
 - -Yes
- Discrete
 - Yes

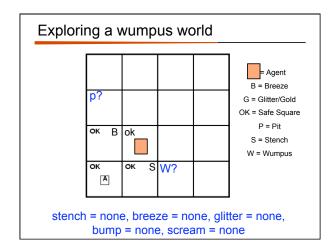


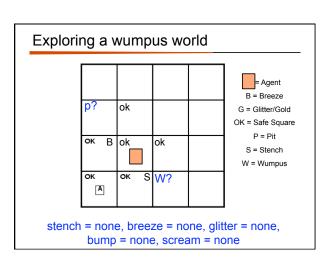


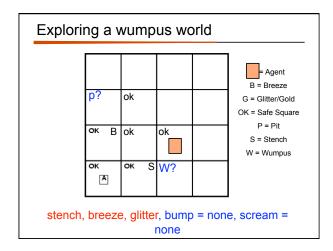










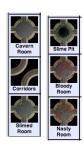


Wumpus with propositional logic

- Using logic statements could determine all of the "safe" squares
- · A few problems?
 - Sometimes, you have to guess (i.e. no safe squares)
 - Sometimes the puzzle isn't solvable (21% of the puzzles are not solvable at all)
 - Wumpus may not eat you ☺

Hunt the Wumpus

- A modern version...
 - http://www.dreamcodex.com/wumpus.php





The real world...

- Cannot always be explained by rules/facts
 The real world does not conform to logic
- Sometimes rocks get wet for other reasons (e.g. dogs)
- Sometimes tomatoes are green, bananas taste like apples and T.Rex's are vegetarians

Probability theory

- Probability theory enables us to make rational decisions
- · Allows us to account for uncertainty
 - Sometimes rocks get wet for other reasons

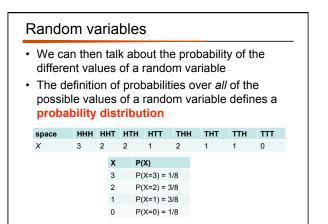
Basic Probability Theory: terminology

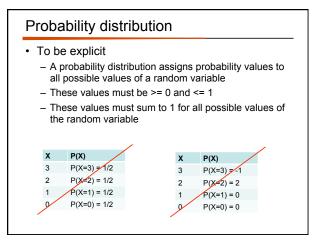
- An experiment has a set of potential outcomes, e.g., throw a dice
- The sample space of an experiment is the set of all possible outcomes, e.g., {1, 2, 3, 4, 5, 6}
- An event is a subset of the sample space.
 - {2}
 - {3, 6}
 - even = $\{2, 4, 6\}$
 - $\text{ odd} = \{1, 3, 5\}$
- · We will talk about the probability of events

Random variables

- A random variable is a mapping of all possible outcomes of an experiment to an event
- It represents all the possible values of something we want to measure in an experiment
- For example, random variable, X, could be the number of heads for a coin
 - note this is different than the sample space

space	ннн	HHT	HTH	HTT	THH	THT	TTH	TTT
X	3	2	2	1	2	1	1	0





Unconditional/prior probability

- · Simplest form of probability is
 - P(X)
- Prior probability: without any additional information, what is the probability
 - What is the probability of a heads?
 - What is the probability it will rain today?
 - What is the probability a student will get an A in AI?
 - What is the probability a person is male?
 - _

Joint distributions

- We can also talk about probability distributions over multiple variables
- P(X,Y)
 - probability of X and Y
 - a distribution over the cross product of possible values

AlPass	P(AlPass)
true	0.89
false	0.13
F	D/F==D==
EngPass	P(EngPas
true	0.92
false	0.08

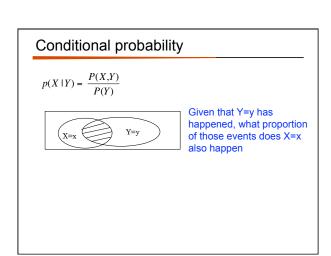
Joint distribution

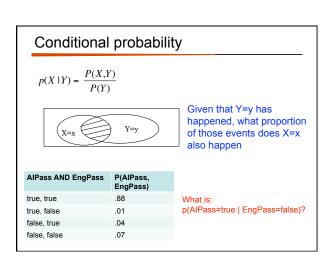
- · Still a probability distribution
 - all values between 0 and 1, inclusive
 - all values sum to 1
- All questions/probabilities of the two variables can be calculate from the joint distribution
 - P(X), P(Y), ...

AIPass AND EngPass	P(AlPass, EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

Conditional probability

- As we learn more information about the world, we can update our probability distribution
 - Allows us to incorporate evidence
- P(X|Y) models this (read "probability of X given Y")
 - What is the probability of a heads given that both sides of the coin are heads?
 - What is the probability it will rain today *given* that it is cloudy?
 - What is the probability a student will get an A in Al given that he/ she does all of the written problems?
 - What is the probability a person is male *given* that they are over 6 ft. tall?
- · Notice that the distribution is still over the values of X





Conditional probability

$p(X \mid Y) =$	P(X,Y)
$p(X \mid I) =$	P(Y)

AlPass AND EngPass	P(AlPass, EngPass)	
true, true	.88	What is:
true, false	.01	p(AlPass=true EngPass=false)?
false, true	.04	
false, false	.07	

$$\frac{P(true, false) = 0.01}{P(EngPass = false) = 0.01 + 0.07 = 0.08} = 0.125$$

Notice this is different than p(AIPass=true) = 0.89

A note about notation

- When talking about a particular assignment, you should technically write p(X=x), etc.
- However, when it's clear (like below), we'll often shorten it
- Also, we may also say P(X) to generically mean any particular value, i.e. P(X=x)

$$\frac{P(true, false) = 0.01}{P(EngPass = false) = 0.01 + 0.07 = 0.08} = 0.125$$

Another example

Start with the joint probability distribution:

	toothache ¬ toothache			
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• P(toothache) = ?

Another example

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Another example

• Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008

• $P(\neg cavity \mid toothache) = ?$

Another example

• Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008

• $P(\neg cavity \mid toothache) = P(\neg cavity, toothache)$ P(toothache)

0.016+0.064 0.108 + 0.012 + 0.016 + 0.064

= 0.4

Normalization

	toothache			¬ toothache		
	catch	catch ¬ catch		catch	¬ catch	
cavity	.108	.012		.072	.008	
¬ cavity	.016	.064		.144	.576	

• Denominator can be viewed as a normalization constant lpha

- $\begin{array}{ll} {\bf P}(CAVITY \mid toothache) = \alpha \ \, {\bf P}(CAVITY, toothache) \\ = \alpha \ \, [{\bf P}(CAVITY, toothache, \neg catch) + {\bf P}(CAVITY, toothache, \neg catch)] \\ = \alpha \ \, [<0.108, 0.016> + <0.012, 0.064>] \\ = \alpha \ \, <0.12, 0.08> = <0.6, 0.4> \end{array}$

unnormalized p(cavity|toothache) unnormalized p(¬cavity|toothache)

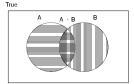
General idea: compute distribution on query variable by fixing evidence variables and summing over hidden/unknown variables

Properties of probabilities

• P(A or B) = ?

Properties of probabilities

• P(A or B) = P(A) + P(B) - P(A,B)



Properties of probabilities

- $P(\neg E) = 1 P(E)$
- If E1 and E2 are logically equivalent, then: P(E1)=P(E2).
 - E1: Not all philosophers are more than six feet tall.
 - E2: Some philosopher is not more that six feet tall.
 - Then P(E1)=P(E2).
- P(E1, E2) ≤ P(E1).

The Three-Card Problem

Three cards are in a hat. One is red on both sides (the red-red card). One is white on both sides (the white-white card). One is red on one side and white on the other (the red-white card). A single card is drawn randomly and tossed into the air.

- a. What is the probability that the red-red card was drawn?
- b. What is the probability that the drawn cards lands with a white side up?
- c. What is the probability that the red-red card was not drawn, assuming that the drawn card lands with the a red side up?

The Three-Card Problem

Three cards are in a hat. One is red on both sides (the red-red card). One is white on both sides (the white-white card). One is red on one side and white on the other (the red-white card). A single card is drawn randomly and tossed into the air.

- a. What is the probability that the red-red card was drawn? p(RR) = 1/3
- b. What is the probability that the drawn cards lands with a white side? p(W-up) = 1/2
- c. What is the probability that the red-red card was not drawn, assuming that the drawn card lands with the a red side up?
 - p(not-RR|R-up)?
 - Two approaches:
 - 3 ways that red can be up... of those, only 1 doesn't involve RR = 1/3
 - p(not-RR|R-up) = p(not-RR, R-up) / p(R-up) = 1/6 / 1/2 = 1/3

Fair Bets

- A bet is fair to an individual I if, according to the individual's probability assessment, the bet will break even in the long run.
- Are the following best fair?:
 Bet (a): Win \$4.20 if RR;
 lose \$2.10 otherwise

Bet (b): Win \$2.00 if W-up; lose \$2.00 otherwise

Bet (c): Win \$4.00 if R-up and not-RR; lose \$4.00 if R-up and RR; neither win nor lose if not-R-up

Verification

there are six possible outcomes, all equally likely

- 1. RR drawn, R-up (side 1)
- 2. RR drawn, R-up (side 2)
- 3. WR drawn, R-up
- 4. WR drawn, W-up
- 5. WW drawn, W-up (side 1)
- 6. WW drawn, W-up (side 2)

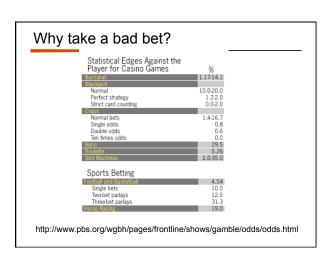
	1	2	3	4	5	6
a.	\$4.20	\$4.20	-\$2.10	-\$2.10	-\$2.10	-\$2.10
b.	-\$2.00	-\$2.00	-\$2.00	\$2.00	\$2.00	\$2.00
C.	-\$4.00	-\$4.00	\$4.00	\$0.00	\$0.00	\$0.00

Verification

		1	2	3	4	5	6
	a.	\$4.20	\$4.20	-\$2.10	-\$2.10	-\$2.10	-\$2.10
ĺ	b.	-\$2.00	-\$2.00	-\$2.00	\$2.00	\$2.00	\$2.00
	C.	-\$4.00	-\$4.00	\$4.00	\$0.00	\$0.00	\$0.00

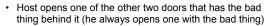
expected values:

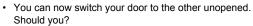
$$\begin{split} E(a) &= \frac{1}{6}4.2 + \frac{1}{6}4.2 + \frac{1}{6}(-2.1) + \frac{1}{6}(-2.1) + \frac{1}{6}(-2.1) + \frac{1}{6}(-2.1) = 0 \\ E(b) &= \frac{1}{6}(-2) + \frac{1}{6}(-2) + \frac{1}{6}(-2) + \frac{1}{6}2 + \frac{1}{6}2 + \frac{1}{6}2 = 0 \\ E(c) &= \frac{1}{6}(-4) + \frac{1}{6}(-4) + \frac{1}{6}4 + \frac{1}{6}0 + \frac{1}{6}0 + \frac{1}{6}0 = -2/3 \end{split}$$



Monty Hall

- 3 doors
 - behind two, something bad
 - behind one, something good
- You pick one door, but are not shown the contents





Monty Hall

- p(win) initially?
 - -3 doors, 1 with a winner, p(win) = 1/3
- p(win | shown_other_door)?
 - One reasoning:
 - once you're shown one door, there are just two remaining doors
 - · one of which has the winning prize
 - 1/2

This is not correct!

Be careful! - Player picks door 1

	winning location		host opens	
4/0	Door 1	1/2	Door 2	
1/3	DOOL 1	1/2	Door 3	
1/3	Door 2	1	Door 3	In these two cases, switching will give you
1/3	Door 3	1	Door 2	the correct answer. Key: host knows where it is.

Another view

- 1000 doors
 - behind 999, something bad
 - behind one, something good
- You pick one door, but are not shown the contents
- Host opens 998 of the other 999 doors that have the bad thing behind it (he always opens ones with the bad thing)
- In essence, you're picking between it being behind your one door or behind any one of the other doors (whether that be 2 or 999)

