AneAD SToP

7 BACKWARD.
I R

57 THINS
V[NGzNE\:Rs

HIGHWR

http://www.xkcd.com/781/

Constraint Satisfaction Problems (CSPs)

CS151
David Kauchak
Fall 2010

Sara Owsley Sood and others

Comments about assign 1

Quick search recap

» Grading
— actually out of 60
— check to make sure the math is right ©

* Be very careful about function names and parameters
« Comments and code style are important for assignments
going forward
» Test your code
— some of your code didn’t “compile”
— http://docs.python.org/library/py_compile.html

* Search

— uninformed
« BFS, DFS, IDS

— informed
+ A* IDA*, greedy-search
» Adversarial search
— assume player makes the optimal move
— minimax and alpha-beta pruning
» Local search (aka state space search)
— start random, make small changes

— dealing with local minima, plateaus, etc.
» random restart, randomization in the approach, simulated
annealing, beam search, genetic algorithms

Intro Example: 8-Queens

Where should | put the queens
in columns 3 and 4?

Intro Example: 8-Queens

The decisions you make constrain the
possible set of next states

Sudoku

(%2

oo
G|l ©

~

What value?

w Ol
S
N

Sudoku

w Ol
S
N

(%]
N
o2}
O©CO~NOOOPRWN -~

Sudoku

16 4 2 X
2 4 (3|91 2
4| |7 3
5 &
8 5
3 6
Z T
1
8
679 e

Sudoku

We could try and solve
5 this by searching, but the
problem constraints may

S
~

8 direct us better allowing
3 for a much faster
2 solution finding.
1
6 79

Constraint satisfaction problem

* Another form of search (more or less)!

+ Set of variables: x;, x, ..., X,

» Domain for each variable indicating possible values: D, ,,
Dx2! s Dxn
» Setof constraints: C,, C,, ..., C,,
— Each constraint limits the values the variables can take
© X E Xy
Xy <X,
* Xq + Xy = X3
o Xy < X2

« Goal: an assignment of values to the variables that
satisfies all of the contraints

Applications

» Scheduling:

I'd like to try and meet this week, just to touch base and see how everything
is going. I'm free:

Anytime Tue., Wednesday after 4pm, Thursday 1-4pm

S1 | can do Tuesday 11-2:30, 4+, Wednesday 5-6, Thursday 11-2:30

| can do anytime Tuesday (just before or after lunch is best), not Wednesday,

R
N

or Thursday afternoon.

s2 I'm free Tuesday and Thursday from 2:45-4 or so, and also Wednesday any
time after 3.

S3 ‘ | can meet from 4-5 on Tuesday or Wednesday after 5. ‘

Applications

Applications

» Scheduling

» Scheduling
— manufacturing
— Hubble telescope time usage
— Airlines
— Cryptography
— computer vision (image interpretation)

Why CSPs?

Why CSPs?

“Constraint programming
represents one of the closest
approaches computer science
has yet made to the Holy Grail of
programming: the user states the
problem, the computer solves it.”
Eugene C. Freuder, Constraints, April 1997

* If you can represent it in this standard way (set
of variables with a domain of values and
constraints), the successor function and goal
test can be written in a generic way that applies
to all CSPs

* We can develop effective generic heuristics
that require no domain specific expertise

* The structure of the constraints can be used to
simplify the solution process

Defining CSP problems

Sudoku

+
F

Cryptarithmatic

1.variables

2.domains of the variables

8-queens :
3. constraints

Example: 8-Queens Problem

» 8variables x,, x,, ..., Xg
» Domain for each variable: {1,2,...,8}

» Constraints are of the forms:
— row constraints: x;# x; for all i, j where j=i

— diagonal constraints: |i] = |x; — x|, for all i, j where j=i

Example: Map Coloring

o 7 variables {WA,NT,SA,Q,NSW,V, T}

¢ Each variable has the same domain {red, , blue}

* No two adjacent variables have the same value:
WA=NT, WA=SA, NT=SA, NT=Q, SA=Q, SA=NSW, SA=V,Q=NSW, NSWx=V

CSP Example: Cryptharithmetic puzzle

M|+
ol -
Clz=
D0 O

Variables: F T U W RO X; X> X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints
alldiff F, T, U, W, R, O)
O+0=R+10- Xy, etc.

Example: Task Scheduling

TZ/ Tl\\m
.

T1 must be done during T3

T2 must be achieved before T1 starts
T2 must overlap with T3

T4 must start after T1 is complete

Many different constraint types

» Unary constraints: involve only a single variable (x, !=
green)

» Binary constraints: involve two variables

» Higher order constraints: involve 3 or more variables
(e.g. all-diff(a,b,c,d,e))

— all higher order constraints can be rewritten as binary constraints
by introducing additional variables!

» Preference constraints - no absolute - they indicate
which solutions are preferred
— | can meet between 3-4, but I'd prefer to meet between 2-3
— Electricity is cheaper at night
— Workers prefer to work in the daytime

Constraint Graph

Binary constraints

Two variables are adjacent or neighbors if they
are connected by an edge or an arc

CSP as a Search Problem

* Initial state:
—{} no assignments
» Successor function:

—any assignment to an unassigned variable
that does not conflict

* Goal test:
— all variables assigned to?

* Max search depth?

— number of variables

CSP as search

Australia

CSP as search

oS
— 1~

| SoK SR SY

CSP as search

A

— T
Sl SO A%

N

o~

CSP as search

[

.

— T
sl oo o

N

- "
N
RSEY

CSP as search

Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)

— If a is complete
* return a

[WA=red | [wA=green [wA=blue — x € select an unassigned variable
/ . . — D <« select an ordering for the domain of x
WA=red WA=red — For each value v in D do
NT=green NT=blue « If v is consistent with a then
— Add (x=v)toa
/ ' & CSP-BACKTRACKING(a)
WA=red WA=red —If w failure then return
NT=green NT=green _ i
Q=red Q=biue Return failure
T H
} v
CSP-BACKTRACKING({})
Questions Choice of Variable

CSP-BACKTRACKING(PartialAssignment a)
— If ais complete
« return a
— x € select an unassigned variable
— D € select an ordering for the domain of x
— For each value v in D do
« If vis consistent with a then
— Add (x=v)toa
< CSP-BACKTRACKING(a)
- If = failure then return

— Return failure

+ Which variable x should be assigned a value next?
¢ In which order should its domain D be sorted?

¢ How do choices made affect assignments for
unassigned variables?

p
\Znananang

) | @ | |
o @ |
@ @ |

‘ x € select an unassigned variable \

Which variable should we pick?

The most constrained variable, i.e. the one
with the fewest remaining values — column 3

Choice of Variable

‘ x € select an unassigned variable ‘

Which variable should we start with?

The variable involved with the most
constraints - SA

Choice of Variable

\ D € select an ordering for the domain of x

Which value should we pick for Q?

Least constraining value - RED

Least constraining value

‘. _E Allows 1 value for SA
Y~ — 5] !
‘ . Allows 0 values for SA

Prefer the value that leaves the largest subset
of legal values for other unassigned variables

Why CSPs?

» Notice that our heuristics work for any
CSP problem formulation
—unlike our previous search problems!

—does not require any domain knowledge
* mancala heuristics

« straight-line distance

Eliminating wasted search

» One of the other important characteristics of
CSPs is that we can prune the domain values
without actually searching (searching implies
guessing)

» Qur goal is to avoid searching branches that will
ultimately dead-end
» How can we use the information available at the

beginning of the assignment to help with this
process?

Constraint Propagation ...

. is the process of determining how the
possible values of one variable affect
the possible values (domains) of other
variables

o A

) @ ||
o

o | @ ||
9 6 &

Forward Checking

After a variable X is assigned a value v, look
at each unassigned variable Y that is
connected to X by a constraint and delete
from Y’s domain any value that is inconsistent
with v

Forward checking

WA NT Q NSW |V SA T
RGB |RGB |RGB |RGB |RGB |RGB |RGB

« Can we detect inevitable failure early?
— And avoid it later?

* Forward checking idea: keep track of remaining legal values for
unassigned variables.

« Terminate search when any variable has no legal values.

10

Map Coloring

Map Coloring

WA NT Q NSW |V SA T

RGB RGB RGB RGB RGB RGB RGB

Pick red for WA... how does it change the domains?

WA NT Q NSW |V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB

Map Coloring

Map Coloring

WA NT Q NSW |V SA T
RGB |RGB |RGB |RGB |RGB |RGB |RGB
R GB RGB |RGB |RGB |GB RGB

Pick green for Q... how does it change the domains?

WA NT Q NSW |V SA T

RGB |RGB |RGB |RGB |RGB |RGB |RGB
R GB RGB |RGB |RGB |GB RGB
R B G RB RGB |B RGB

11

Map Coloring

Map Coloring

WA NT Q NSW |V SA T

RGB |RGB |RGB |RGB |RGB RGB RGB
R GB RGB |RGB |RGB |GB RGB
R B G RB RGB B RGB

Pick blue for V... how does it change the domains?

WA NT Q NSW |V SA T

RGB |RGB |RGB |RGB |RGB RGB [RGB
R GB RGB |RGB |RGB |GB RGB
R B G RB RGB |B RGB
R B G R B RGB

Only picked 3 colors, but already know we’re at a dead end!

Map Coloring

Map Coloring

WA |NT Q NSW |V SA |T

RGB RGB RGB RGB RGB RGB RGB

R GB |RGB [RGB |RGB |GB RGB

R B G RB RGB |B RGB
After just selecting 2... anything

wrong with this?

wa INT Ja NSW v sA [T

RGB |RGB |RGB |RGB |RGB |RGB |RGB
R GB |RGB |RGB |RGB |GB _|RGB
R B) |e RB |rReB (B) [RGB

After just selecting 2... anything
wrong with this?

12

Removal of Arc Inconsistencies

Arc consistency: AC-3 algorithm

* Given two variables x; and x, that are connected
by some constraint

+ We have the current remaining domains D,; and
ka

* For every possible label in D,
— if using that label leaves no possible labels in D,

— Then get rid of that possible label

» See full pseudocode in the book

* What happens if we remove a possible value during an
arc consistency check?
— may cause other domains to change!
* When do we stop?
— keep running repeatedly until no inconsistencies remain
— can get very complicated to keep track of which to check
*+ AC-3
— systematic way to keep track of which arcs still need to be check

— keep track of the set of possible constraints/arcs that may need
to be check

grab one from this set

— if we make changes to variable’s domain, add all of it's
constraints into the step

keep doing this until no constraints exist

Solving a CSP

4-Queens Problem

» Search:
— can find good solutions, but must examine non-
solutions along the way
+ Constraint Propagation:

— can rule out non-solutions, but this is not the same
as finding solutions

* Interweave constraint propagation and search

— Perform constraint propagation at each search
step.

X1 X2
1 2 3 4 {1/21314} {1121314}
1+ee®
2 @
3 [J
! ® X3 X4
{1,2,3,4} {1,2,3,4}

What can we remove with
forward checking?

13

4-Queens Problem

4-Queens Problem

X1 X2 X1 X2
1 2 3 4 {1/21314} { ’ 13/4} 1 2 3 4 {1121314} { rr /4}
1o el® =y
2l @ 2l @
3 @ 3 @
4 [] X3 X4 4 L J X3 X4
{ l2I I4} { l2l3l } { Izl I4} { l2l3l }
Anything else with arc consistency? Anything else?
Can’t have X2 = 3! Can’t have X3 = 4!
4-Queens Problem 4-Queens Problem
X1 X2 X1 X2
1 2 3 4 {1121314} { 1 14} 1 2 3 4 {1121314} { 1 14}
1i+Hoe/e iHHole/®
2l @ 2l @
3 @ 3 @
4 ® X3 X4 4 L J X3 X4
{2 .} {23} {,,.} {23}

Anything else?
Can’t have X3 = 2!

Technically no search over values was
involved. Only looked at constraints.

14

4-Queens Problem

4-Queens Problem

X1 X2 X1 X2
1 2 3 4 { /21314} {11213/4} 1 2 3 4 { 1213/4} { rr /4}
1 @ 1 @
RSO0 :HHol@®
3 @ 3| @
4 ® 3 xa 4 ® X3 X4
{1,2,3,4} {1,2,3,4} {1 3} {1, 34}
?
Can’t have X3 =3
4-Queens Problem 4-Queens Problem
X1 X2 X1 X2
1 2 3 4 { 121314} { 1 14} 1 2 3 4 { /21314} { 1 14}
1 @ 1 @
:Hol®® :Hol®@®
3| @ 3| @
4 e X3 X4 4 e X3 X4
{ll 7 } {11 l3l4} {11 7 } { I I3I }

?

Can'thave X4 =1orX4 =4

15

4-Queens Problem

X1 X2
123 4 1,234} Lo,
1| [@HH
:+Hooe
3| @ H
‘[He X3 X4

{1III} {Il3l}

Only searched 2 nodes!

Summary

Constraint Satisfaction Problems (CSP)

Key: allow us to use heuristics that are problem
independent

CSP as a search problem
— Backtracking algorithm
— General heuristics

Forward checking
Constraint propagation
Interweaving CP and backtracking

Edge Labeling in Computer Vision

How do you know what the 3-D shape looks like?

Edge Labeling

v

In or out?

16

Edge Labeling

Information about the other edges
constrains the possibilities

Edge Labeling

Labels of Edges

» Convex edge:
— two surfaces intersecting at an angle greater than 180°

— often, “sticking out”, “towards us”
» Concave edge
— two surfaces intersecting at an angle less than 180°
— often, “folded in”, “away from us”
+ + convex edge, both surfaces visible
+ — concave edge, both surfaces visible
+ < convex edge, only one surface is visible and it is
on the right side of <

Edge Labeling

17

Edge Labeling

Junction Label Sets

2

A\

Vlede Y Y
'\

[(Waltz, 1975; Mackworth, 1977)

Edge Labeling

Edge Labeling as a CSP

» A variable is associated with each junction

» The domain of a variable is the label set of
the corresponding junction

» Each constraint imposes that the values
given to two adjacent junctions give the
same label to the joining edge

Edge Labeling

Edge Labeling

e

Edge Labeling

19

Edge Labeling

NN NN NS

+ o+

Problem

Consider the constraint graph on the right.
The domain for every variable is [1,2,3,4]. e

There are 2 unary constraints:

- variable “a” cannot take values 3 and 4. a ° e

- variable “b” cannot take value 4.

There are 8 binary constraints stating that variables
connected by an edge cannot have the same value. o

Find a solution for this CSP by using the following
heuristics: minimum value heuristic, degree heuristic,
forward checking.

Problem

Consider the constraint graph on the right.
The domain for every variable is [1,2,3,4]. o

There are 2 unary constraints:

- variable “a” cannot take values 3 and 4. e ° e

- variable “b” cannot take value 4.

There are 8 binary constraints stating that variables
connected by an edge cannot have the same value. @

Find a solution for this CSP by using the following
heuristics: minimum value heuristic, degree heuristic,
forward checking.

MVH=> a=1 (for example)
FC+MVH> b=2
FC+MVH+DH-> ¢=3
FC+MVH-> d=4

FC> e=1

Another AC-3 example

AlIDifferent on 6th row

~ (124567} 1 6 4 2

— {1,2456,7} 2 4 3l9 1

- 5] 18] [4] [7

- {9}

— {1,2,4,56,7} 9 6|5

~ {1,2456,7} 5 1 2 8

— {1,2456,7}

B 819 3

- {1,2456,7} 8 9 4 2

713]5 9 1

4 67 9

20

Another AC-3 example

Another AC-3 example

« AllIDifferent on 1st col

« AllIDifferent on 2nd col

- {6,7} 1 6 4 - {6,7} l 6 4
— {124,567} 2 9 - {1,2,4,5) 2 9
- {8} - {8}
- {9} 5 4 -9 5 4
— {124,567} 9 5 — {1,2456,7} 9 5
- {124,567} 5 - {124,567} 5
- {124,567} 8 - {124,567} 8
- {3 - {3
— {1,2,4,586,7} 8 9 2 — {1,2,4586,7} 8 9 2
7 3 7|3
4 6 4 6
Another AC-3 example Another AC-3 example
« AllIDifferent on 4th small square + AllIDifferent on 5th col
- (6,7} 1 6 4 - 6.7} 1 6 4
~ {124} 2 9 - {124} 2 9
- {8} - {8}
o 5 4 et 5 4
— {1,2,4,586,7}) 9 5 — {1,2,56,7} 9 5
- {124,567} 5 - {124,567} 5
- {1,24,56,7) 8 - {1,2,4,56,7} 8
- {3} - {3}
- {1,2456,7} 8 9 2 - {1,2456,7} 8 9 2
7 3 7 3
4 6 4 6

21

Another AC-3 example

Another AC-3 example

« AllIDifferent on 6th col

+ AllIDifferent on 5th small square

- {124} 2 4 319
- {8}
_ o 5 8 4
~ {12567} 9 6|5
— {1457} 5 1 2
— {1.2456,7}
_® 819
— {124,567} 8 9 4 2
713|5 9
4 6

s

— {6,7} l

- {124} 2

- {8}

- {9}

- {57}

- 45 5

- {124,567}

- {3

— {1,2,4586,7} 8
4

Another AC-3 example

Another AC-3 example

« AlIDifferent on 7th col

+ AlIDifferent on 9th col

- {1.24} 2 4 319
- {8}
_ 5 8 4
- 57 9 6|5
- {45 5 1 2
- {17
_ B 89
— {12456,7} 8 9 4 2
713]|5 9
4 6

- {6,7} l 4
- {124} 2 9
- {8
et 5 4
— {5,7} 5
- {4,5} 5
- {n
- {3 8
- {456} 8 9 2
3
4 6

22

Another AC-3 example

« AllIDifferent on 6th small square

- 6,7} 1 6 4
- {1,24} 2 4 3(9
- {8
_ o 5 8 4
~ 57 9 6|5
- {45} 5 1 2
- {17
_® 819
- {46} 8 9 4 2
713|5 9
4 6

23

