
1

http://www.xkcd.com/781/

Constraint Satisfaction Problems (CSPs)

CS151
David Kauchak

Fall 2010

Some material borrowed from:
Sara Owsley Sood and others

Comments about assign 1

•  Grading
–  actually out of 60

–  check to make sure the math is right 

•  Be very careful about function names and parameters

•  Comments and code style are important for assignments
going forward

•  Test your code
–  some of your code didn’t “compile”

–  http://docs.python.org/library/py_compile.html

Quick search recap

•  Search
–  uninformed

•  BFS, DFS, IDS

–  informed
•  A*, IDA*, greedy-search

•  Adversarial search
–  assume player makes the optimal move

–  minimax and alpha-beta pruning

•  Local search (aka state space search)
–  start random, make small changes

–  dealing with local minima, plateaus, etc.
•  random restart, randomization in the approach, simulated

annealing, beam search, genetic algorithms

2

Where should I put the queens
in columns 3 and 4? The decisions you make constrain the

possible set of next states

Sudoku

What value?

Sudoku

1
2
3
4
5
6
7
8
9

3

Sudoku

1
2
3
4
5
6
7
8
9

Sudoku

We could try and solve
this by searching, but the
problem constraints may
direct us better allowing

for a much faster
solution finding.

Constraint satisfaction problem

•  Another form of search (more or less)!

•  Set of variables: x1, x2, …, xn

•  Domain for each variable indicating possible values: Dx1,
Dx2, …, Dxn

•  Set of constraints: C1, C2, …, Cm
–  Each constraint limits the values the variables can take

•  x1 ≠ x2

•  x1 < x2

•  x1 + x2 = x3

•  x4 < x5
2

•  Goal: an assignment of values to the variables that
satisfies all of the contraints

Applications

•  Scheduling:
I'd like to try and meet this week, just to touch base and see how everything
is going. I'm free:

Anytime Tue., Wednesday after 4pm, Thursday 1-4pm

I can do Tuesday 11-2:30, 4+, Wednesday 5-6, Thursday 11-2:30

I can do anytime Tuesday (just before or after lunch is best), not Wednesday,
or Thursday afternoon.

I'm free Tuesday and Thursday from 2:45-4 or so, and also Wednesday any
time after 3.

I can meet from 4-5 on Tuesday or Wednesday after 5.

Me

S1

P2

S2

S3

4

Applications

•  Scheduling

Applications

•  Scheduling
– manufacturing

– Hubble telescope time usage

– Airlines

– Cryptography

– computer vision (image interpretation)

– …

Why CSPs?

“Constraint programming
represents one of the closest
approaches computer science
has yet made to the Holy Grail of
programming: the user states the
problem, the computer solves it.”
Eugene C. Freuder, Constraints, April 1997

Why CSPs?

•  If you can represent it in this standard way (set
of variables with a domain of values and
constraints), the successor function and goal
test can be written in a generic way that applies
to all CSPs

•  We can develop effective generic heuristics
that require no domain specific expertise

•  The structure of the constraints can be used to
simplify the solution process

5

Defining CSP problems

Graph coloring
Sudoku

8-queens

1. variables
2. domains of the variables
3. constraints

Cryptarithmatic

•  8 variables x1, x2, …, x8

•  Domain for each variable: {1,2,…,8}

•  Constraints are of the forms:
–  row constraints: xi ≠ xj for all i, j where j≠i

–  diagonal constraints: |i-j| ≠ |xi – xj|, for all i, j where j≠i

•  7 variables {WA,NT,SA,Q,NSW,V,T}
•  Each variable has the same domain {red, green, blue}
•  No two adjacent variables have the same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, SA≠V,Q≠NSW, NSW≠V

CSP Example: Cryptharithmetic puzzle

6

T1 must be done during T3
T2 must be achieved before T1 starts
T2 must overlap with T3
T4 must start after T1 is complete

T1

T2

T3

T4

Many different constraint types

•  Unary constraints: involve only a single variable (x1 !=
green)

•  Binary constraints: involve two variables

•  Higher order constraints: involve 3 or more variables
(e.g. all-diff(a,b,c,d,e))
–  all higher order constraints can be rewritten as binary constraints

by introducing additional variables!

•  Preference constraints - no absolute - they indicate
which solutions are preferred
–  I can meet between 3-4, but I’d prefer to meet between 2-3

–  Electricity is cheaper at night

–  Workers prefer to work in the daytime

Binary constraints

T

WA

NT

SA

Q

NSW

V

Two variables are adjacent or neighbors if they
are connected by an edge or an arc

•  Initial state:
–  {} no assignments

•  Successor function:
– any assignment to an unassigned variable

that does not conflict

•  Goal test:
– all variables assigned to?

•  Max search depth?
– number of variables

7

CSP as search CSP as search

CSP as search CSP as search

8

{}

WA=red WA=green WA=blue

WA=red
NT=green

WA=red
NT=blue

WA=red
NT=green
Q=red

WA=red
NT=green
Q=blue

T

WA

NT

SA

Q

NSW

V

CSP-BACKTRACKING(PartialAssignment a)
–  If a is complete

•  return a

–  x  select an unassigned variable
–  D  select an ordering for the domain of x
–  For each value v in D do

•  If v is consistent with a then
–  Add (x = v) to a
–  result  CSP-BACKTRACKING(a)

–  If result ≠ failure then return result

–  Return failure

CSP-BACKTRACKING({})

  Which variable x should be assigned a value next?

  In which order should its domain D be sorted?

  How do choices made affect assignments for
unassigned variables?

CSP-BACKTRACKING(PartialAssignment a)
–  If a is complete

•  return a

–  x  select an unassigned variable
–  D  select an ordering for the domain of x
–  For each value v in D do

•  If v is consistent with a then
–  Add (x = v) to a
–  result  CSP-BACKTRACKING(a)

–  If result ≠ failure then return result

–  Return failure

Which variable should we pick?

The most constrained variable, i.e. the one
with the fewest remaining values – column 3

x  select an unassigned variable

9

T

WA

NT

SA

Q

NSW

V

Which variable should we start with?

The variable involved with the most
constraints - SA

x  select an unassigned variable

WA

NT

SA

Q

NSW
V

T

WA

NT

D  select an ordering for the domain of x

Which value should we pick for Q?

Least constraining value - RED

Least constraining value

Prefer the value that leaves the largest subset
of legal values for other unassigned variables

Why CSPs?

•  Notice that our heuristics work for any
CSP problem formulation
– unlike our previous search problems!

– does not require any domain knowledge
•  mancala heuristics

•  straight-line distance

10

Eliminating wasted search

•  One of the other important characteristics of
CSPs is that we can prune the domain values
without actually searching (searching implies
guessing)

•  Our goal is to avoid searching branches that will
ultimately dead-end

•  How can we use the information available at the
beginning of the assignment to help with this
process?

 … is the process of determining how the
possible values of one variable affect
the possible values (domains) of other
variables

 After a variable X is assigned a value v, look
at each unassigned variable Y that is
connected to X by a constraint and delete
from Y’s domain any value that is inconsistent
with v

Forward checking

•  Can we detect inevitable failure early?
–  And avoid it later?

•  Forward checking idea: keep track of remaining legal values for
unassigned variables.

•  Terminate search when any variable has no legal values.

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

11

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Pick red for WA… how does it change the domains?

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

T
WA

NT

SA

Q

NSW

V

Pick green for Q… how does it change the domains?

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

T
WA

NT

SA

Q

NSW

V

12

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

Pick blue for V… how does it change the domains?

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

R B G R B RGB

T
WA

NT

SA

Q

NSW

V

Only picked 3 colors, but already know we’re at a dead end!

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

T
WA

NT

SA

Q

NSW

V

After just selecting 2… anything
wrong with this?

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

T
WA

NT

SA

Q

NSW

V

After just selecting 2… anything
wrong with this?

13

•  Given two variables xj and xk that are connected
by some constraint

•  We have the current remaining domains Dxj and
Dxk

•  For every possible label in Dxj

–  if using that label leaves no possible labels in Dxk

–  Then get rid of that possible label

•  See full pseudocode in the book

Arc consistency: AC-3 algorithm

•  What happens if we remove a possible value during an
arc consistency check?
–  may cause other domains to change!

•  When do we stop?
–  keep running repeatedly until no inconsistencies remain

–  can get very complicated to keep track of which to check

•  AC-3
–  systematic way to keep track of which arcs still need to be check

–  keep track of the set of possible constraints/arcs that may need
to be check

–  grab one from this set

–  if we make changes to variable’s domain, add all of it’s
constraints into the step

–  keep doing this until no constraints exist

•  Search:
–  can find good solutions, but must examine non-

solutions along the way

•  Constraint Propagation:
–  can rule out non-solutions, but this is not the same

as finding solutions

•  Interweave constraint propagation and search
–  Perform constraint propagation at each search

step.

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

What can we remove with
forward checking?

14

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Anything else with arc consistency?

Can’t have X2 = 3!

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Anything else?

Can’t have X3 = 4!

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3, }

X4
{1,2,3,4}

X2
{1,2,3,4}

Anything else?

Can’t have X3 = 2!

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Technically no search over values was
involved. Only looked at constraints.

15

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

?

Can’t have X3 = 3

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

?

Can’t have X4 = 1 or X4 = 4

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

16

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Only searched 2 nodes!

•  Constraint Satisfaction Problems (CSP)

•  Key: allow us to use heuristics that are problem
independent

•  CSP as a search problem
–  Backtracking algorithm

–  General heuristics

•  Forward checking

•  Constraint propagation

•  Interweaving CP and backtracking

How do you know what the 3-D shape looks like? In or out?

17

Information about the other edges
constrains the possibilities

Labels of Edges

•  Convex edge:
–  two surfaces intersecting at an angle greater than 180°

–  often, “sticking out”, “towards us”

•  Concave edge
–  two surfaces intersecting at an angle less than 180°

–  often, “folded in”, “away from us”

•  + convex edge, both surfaces visible

•  － concave edge, both surfaces visible

•  ← convex edge, only one surface is visible and it is
on the right side of ←

18

+

+ +

+

+

+

+

+

+
+

- -

+ + - -

-
- - + +

+ + +

+

+

-
-

-
-

- +

(Waltz, 1975; Mackworth, 1977)

CSP? •  A variable is associated with each junction

•  The domain of a variable is the label set of
the corresponding junction

•  Each constraint imposes that the values
given to two adjacent junctions give the
same label to the joining edge

19

+ - + -

+
-

+ - -
+ +

+

+

+

+ -
-
-

-
- -

+ + +

+

-
- - + +

+ +

20

+ +

+

+ + - -

-
- - + +

+ +

c a

d

e

b

Consider the constraint graph on the right.

The domain for every variable is [1,2,3,4].

There are 2 unary constraints:
- variable “a” cannot take values 3 and 4.

-  variable “b” cannot take value 4.

There are 8 binary constraints stating that variables
connected by an edge cannot have the same value.

Find a solution for this CSP by using the following
heuristics: minimum value heuristic, degree heuristic,

forward checking.

Problem

c a

d

e

b

Consider the constraint graph on the right.

The domain for every variable is [1,2,3,4].

There are 2 unary constraints:
- variable “a” cannot take values 3 and 4.

-  variable “b” cannot take value 4.

There are 8 binary constraints stating that variables
connected by an edge cannot have the same value.

Find a solution for this CSP by using the following
heuristics: minimum value heuristic, degree heuristic,

forward checking.

 MVH a=1 (for example)
 FC+MVH b=2
 FC+MVH+DH c=3
 FC+MVH d=4

 FC e=1

Problem Another AC-3 example

•  AllDifferent on 6th row
–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}

–  {8}

–  {9}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}
–  {3}

–  {1,2,4,5,6,7}

21

•  AllDifferent on 1st col
–  {6,7}

–  {1,2,4,5,6,7}

–  {8}

–  {9}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}
–  {3}

–  {1,2,4,5,6,7}

Another AC-3 example

•  AllDifferent on 2nd col
–  {6,7}

–  {1,2,4,5}

–  {8}

–  {9}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}
–  {3}

–  {1,2,4,5,6,7}

Another AC-3 example

•  AllDifferent on 4th small square
–  {6,7}

–  {1,2,4}

–  {8}

–  {9}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}
–  {3}

–  {1,2,4,5,6,7}

Another AC-3 example

•  AllDifferent on 5th col
–  {6,7}

–  {1,2,4}

–  {8}

–  {9}

–  {1,2,5,6,7}

–  {1,2,4,5,6,7}

–  {1,2,4,5,6,7}
–  {3}

–  {1,2,4,5,6,7}

Another AC-3 example

22

•  AllDifferent on 6th col
–  {6,7}

–  {1,2,4}

–  {8}

–  {9}

–  {1,2,5,6,7}

–  {1,4,5,7}

–  {1,2,4,5,6,7}
–  {3}

–  {1,2,4,5,6,7}

Another AC-3 example

•  AllDifferent on 5th small square
–  {6,7}

–  {1,2,4}

–  {8}

–  {9}

–  {5,7}

–  {4,5}

–  {1,2,4,5,6,7}
–  {3}

–  {1,2,4,5,6,7}

Another AC-3 example

•  AllDifferent on 7th col
–  {6,7}

–  {1,2,4}

–  {8}

–  {9}

–  {5,7}

–  {4,5}

–  {1,7}
–  {3}

–  {1,2,4,5,6,7}

Another AC-3 example

•  AllDifferent on 9th col
–  {6,7}

–  {1,2,4}

–  {8}

–  {9}

–  {5,7}

–  {4,5}

–  {1,7}
–  {3}

–  {4,5,6}

Another AC-3 example

23

•  AllDifferent on 6th small square
–  {6,7}

–  {1,2,4}

–  {8}

–  {9}

–  {5,7}

–  {4,5}

–  {1,7}
–  {3}

–  {4,6}

Another AC-3 example

