Some material borrowed from Sara Dewey, Soni, and others.

Local Search

CS151
David Kauchak
Fall 2010

http://www.youtube.com/watch?v=4PcL6-mjRNk

Administrative
- Assign 1 grading...
- Assign 2 extended (now due Friday at 5pm)
 - try and finish at least alpha-beta (and ideally the heuristic) before Wed.
 - good job to those who have already started!
 - use this time to make better players… I want a good tournament 😊
- Will post Written 2 solutions
- Look for Written 3 soon...

N-Queens problem
N-Queens problem

- What is the depth?
 - 8
- What is the branching factor?
 - \(\leq 8 \)
- \(8^8 = 17 \text{ million nodes} \)

- Do we care about the path?
- What do we really care about?

Local search

- So far: systematic exploration:
 - Explore full search space (possibly) using principled pruning (A*, . . .)
- Best such algorithms (IDA*) can handle
 - \(10^{100} \) states \(\approx 500 \) binary-valued variables
 (ballpark figures only!)
- but . . . some real-world problem have 10,000 to 100,000 variables \(10^{30,000} \) states
- We need a completely different approach:
 - Local Search Methods or
 - Iterative Improvement Methods

Local search

- Key difference: we don’t care about the path to the solution, only the solution itself!
- Other similar problems?
 - sudoku
 - crossword puzzles
 - VLSI design
 - job scheduling
 - Airline fleet scheduling
 - …

Alternate Approach

- Start with a random configuration
- repeat
 - generate a set of “local” next states
 - move to one of these next states
- How is this different?
Local search

- Start with a random configuration
- repeat
 - generate a set of “local” next states
 - move to one of these next states

Requirements:
- ability to generate an initial, random guess
- generate the set of next states that are “local”
- criterion for evaluating what state to pick!

Example: 4 Queens

- State:
 - 4 queens in 4 columns
- Generating random state:
 - any configuration
 - any configuration without row conflicts?
- Operations:
 - move queen in column
- Goal test:
 - no attacks
- Evaluation:
 - $h(state) = \text{number of attacks}$

Local search

- Start with a random configuration
- repeat
 - generate a set of “local” next states
 - move to one of these next states

Starting state and next states are generally constrained/specified by the problem

Local search

- Start with a random configuration
- repeat
 - generate a set of “local” next states
 - move to one of these next states

How should we pick the next state to go to?
Greedy: Hill-climbing search

- Start with a random configuration
- repeat
 - generate a set of "local" next states
 - move to one of these next states

 pick the best one according to our heuristic

again, unlike A* and others, we don’t care about the path

Hill-Climbing

```python
def hillClimbing(problem):
    """ This function takes a problem specification and returns
    a solution state which it finds via hill climbing """
    currentNode = makeNode(initialState(problem))
    while True:
        nextNode = getHighestSuccessor(currentNode, problem)
        if value(nextNode) <= value(currentNode):
            return currentNode
        currentNode = nextNode
```

Example: n-queens

3 steps!

Graph coloring

- What is the graph coloring problem?
Graph coloring

- Given a graph, label the nodes of the graph with n colors such that no two nodes connected by an edge have the same color.
- Is this a hard problem?
 - NP-hard (NP-complete problem)
- Applications
 - scheduling
 - sudoku

Local search: graph 3-coloring

- Initial state?
- Next states?
- Heuristic/evaluation measure?

Example: Graph Coloring

1. Start with random coloring of nodes
2. Change color of one node to reduce # of conflicts
3. Repeat 2

Eval: number of “conflicts”, pairs adjacent nodes with the same color:

2

Example: Graph Coloring

1. Start with random coloring of nodes
2. Change color of one node to reduce # of conflicts
3. Repeat 2

Eval: number of “conflicts”, adjacent nodes with the same color:

1
Example: Graph Coloring

1. Start with random coloring of nodes
2. Change color of one node to reduce # of conflicts
3. Repeat 2

Eval: number of “conflicts”, adjacent nodes with the same color:

Hill-climbing Search: 8-queens problem

\[h = \text{number of pairs of queens that are attacking each other, either directly or indirectly} \]
\[h = 17 \text{ for the above state} \]

Hill-climbing search: 8-queens problem

86% of the time, this happens
After 5 moves, we’re here... now what?

Problems with hill-climbing

Hill-climbing Performance

- Complete?
- Optimal?
- Time Complexity
- Space Complexity

Problems with hill-climbing

Idea 1: restart!

- Random-restart hill climbing
 - if we find a local minima/maxima start over again at a new random location

Pros:

Cons:

Idea 1: restart!

- Random-restart hill climbing
 - if we find a local minima/maxima start over again at a new random location

Pros:
 - simple
 - no memory increase
 - for n-queens, usually a few restarts gets us there
 - the 3 million queens problem can be solve in < 1 min!

Cons:
 - if space has a lot of local minima, will have to restart a lot
 - loses any information we learned in the first search
 - sometimes we may not know we’re in a local minima/maxima
Idea 2: introduce randomness

```python
def hillClimbing(problem):
    """ This function takes a problem specification and returns
    a solution state which it finds via hill climbing """
    currentNode = makeNode(initialState(problem))
    while True:
        nextNode = getHighestSuccessor(currentNode, problem)
        if value(nextNode) <= value(currentNode):
            return currentNode
        currentNode = nextNode
```

Rather than always selecting the best, pick a random move with some probability
- sometimes pick best, sometimes random (epsilon greedy)
- make better states more likely, worse states less likely
- book just gives one… many ways of introducing randomness!

Idea 3: simulated annealing

- What does the term annealing mean?

"When I proposed to my wife I was annealing down on one knee?"

Simulated annealing

- Early on, we may want a lot of randomness
 - keeps it from getting stuck in local minima
- As time progress, allow less and less randomness in the moves made
- Specify a "cooling" schedule, which is how much randomness is included over time
Idea 4: why just 1 initial state?

- Local beam search: keep track of \(k \) states rather than just one
 - Start with \(k \) randomly generated states
 - At each iteration, all the successors of all \(k \) states are generated
 - If any one is a goal state, stop;
 - else select the \(k \) best successors from the complete list and repeat

Local beam search

- Pros/cons?
 - uses/utilized more memory
 - over time, set of states can become very similar
- How is this different than just randomly restarting \(k \) times?
- What do you think regular beam search is?

An aside…

Traditional beam search

- A number of variants:
 - BFS except only keep the top \(k \) at each level
 - best-first search (e.g. greedy search or A*) but only keep the top \(k \) in the priority queue
- Complete?
- Used in many domains
 - e.g. machine translation
 - [link 1]
 - [link 2]

A few others…

- Stochastic beam search
 - Instead of choosing \(k \) best from the pool, choose \(k \) semi-randomly
- Taboo list: prevent returning quickly to same state
 - keep a fixed length list (queue) of visited states
 - add most recent and drop the oldest
 - never visit a state that’s in the taboo list
Idea 5: genetic algorithms

- We have a pool of k states
- Rather than pick from these, create new states by combining states
- Maintain a “population” of states

Genetic Algorithms

- A class of probabilistic optimization algorithms
 - A genetic algorithm maintains a population of candidate solutions for the problem at hand, and makes it evolve by iteratively applying a set of stochastic operators
 - Inspired by the biological evolution process
 - Uses concepts of “Natural Selection” and “Genetic Inheritance” (Darwin 1859)
 - Originally developed by John Holland (1975)

The Algorithm

1. Randomly generate an initial population.
2. Select parents and “reproduce” the next generation
3. Randomly mutate some
4. Evaluate the fitness of the new generation
5. Discard old generation and keep some of the best from the new generation
6. Repeat step 2 though 4 till iteration N

Genetic Algorithm Operators

Mutation and Crossover

Parents:
- Parent 1: 1 1 1 0 1 0 1
- Parent 2: 1 1 0 1 1 0 1

Children:
- Child 1: 1 0 1 0 1
- Child 2: 1 1 0 1 1

Mutation
Genetic algorithms

- Surprisingly efficient search technique
- Wide range of applications
- Formal properties elusive
- Intuitive explanation:
 - Search spaces are too large for systematic search anyway...
- Area will most likely continue to thrive

Local Search Example: SAT

- Many real-world problems can be translated into propositional logic
 \[(A \lor B \lor C) \land (\neg B \lor C \lor D) \land (A \lor \neg C \lor D)\]
 . . . solved by finding truth assignment to variables \((A, B, C, . . .)\) that satisfies the formula
- Applications
 - planning and scheduling
 - circuit diagnosis and synthesis
 - deductive reasoning
 - software testing
 - . . .
Satisfiability Testing

- Best-known systematic method:
 - Davis-Putnam Procedure (1960)
 - Backtracking depth-first search (DFS) through space of truth assignments (with unit-propagation)

Backtracking Depth-First Search (DFS) through space of truth assignments (with unit-propagation)

\[
(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C) \land (A \lor \neg B)
\]

\[
C \land (B \lor \neg C) \land \neg B \\
C \land (B \lor \neg C)
\]

\[
C \land \neg C
\]

Greedy Local Search (Hill Climbing)

- GSAT:
 1. Guess random truth assignment
 2. Flip value assigned to the variable that yields the greatest # of satisfied clauses. (Note: Flip even if no improvement)
 3. Repeat until all clauses satisfied, or have performed "enough" flips
 4. If no sat-assign found, repeat entire process, starting from a different initial random assignment.

Greedy Local Search (Hill Climbing): GSAT

Greedy Local Search (Hill Climbing): GSAT

1. Guess random truth assignment
2. Flip value assigned to the variable that yields the greatest # of satisfied clauses. (Note: Flip even if no improvement)
3. Repeat until all clauses satisfied, or have performed "enough" flips
4. If no sat-assign found, repeat entire process, starting from a different initial random assignment.

GSAT vs. DP on Hard Random Instances

<table>
<thead>
<tr>
<th>Form.</th>
<th>m.flops</th>
<th>GSAT</th>
<th>Davis-Putnam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>retries</td>
<td>time</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
<td>6</td>
<td>0.5 sec</td>
</tr>
<tr>
<td>70</td>
<td>350</td>
<td>11</td>
<td>1 sec</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>42</td>
<td>6 sec</td>
</tr>
<tr>
<td>130</td>
<td>600</td>
<td>82</td>
<td>14 sec</td>
</tr>
<tr>
<td>140</td>
<td>700</td>
<td>53</td>
<td>14 sec</td>
</tr>
<tr>
<td>150</td>
<td>1500</td>
<td>100</td>
<td>45 sec</td>
</tr>
<tr>
<td>200</td>
<td>2000</td>
<td>248</td>
<td>3 min</td>
</tr>
<tr>
<td>300</td>
<td>6000</td>
<td>232</td>
<td>12 min</td>
</tr>
<tr>
<td>500</td>
<td>10000</td>
<td>996</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

Notes:
- Define “Hard” later
- Only “satisfiable” formulæ
 (else GSAT does not terminate)
Experimental Results: Hard Random 3SAT

Clustering

For example...

Hierarchical Clustering

<table>
<thead>
<tr>
<th>vars</th>
<th>GSAT basic time</th>
<th>eff.</th>
<th>walk time</th>
<th>eff.</th>
<th>Simul. Ann. time</th>
<th>eff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>4</td>
<td>.12</td>
<td>.2</td>
<td>1.0</td>
<td>.6</td>
<td>.88</td>
</tr>
<tr>
<td>200</td>
<td>22</td>
<td>.01</td>
<td>4</td>
<td>.97</td>
<td>21</td>
<td>.86</td>
</tr>
<tr>
<td>400</td>
<td>112</td>
<td>.02</td>
<td>7</td>
<td>.95</td>
<td>75</td>
<td>.93</td>
</tr>
<tr>
<td>600</td>
<td>*</td>
<td>*</td>
<td>39</td>
<td>1.0</td>
<td>427</td>
<td>.3</td>
</tr>
<tr>
<td>800</td>
<td>*</td>
<td>*</td>
<td>5965</td>
<td>.85</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1000</td>
<td>*</td>
<td>*</td>
<td>3255</td>
<td>.95</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

- Effectiveness: prob. that random initial assignment leads to a solution.
- Complete methods, such as DP, up to 400 variables
 - Mixed Walk better than Simulated Annealing
 - better than Basic GSAT
 - better than Davis-Putnam

Group together similar items. Find clusters.
Dendogram

- Represents all partitionings of the data
- We can get a K clustering by looking at the connected components at any given level
- Frequently binary dendograms, but n-ary dendograms are generally easy to obtain with minor changes to the algorithms

Hierarchical clustering as local search

- State?
 - a hierarchical clustering of the data
 - basically, a tree over the data
 - huge state space!
- "adjacent states"?
 - swap two sub-trees
 - can also "graft" a sub-tree on somewhere else

Swap without temporal constraints, example 1

- swap B and D
- no change to the structure

Swap without temporal constraints, example 2

- swap (D,E) and C
- structure changed!
Hierarchical clustering as local search

- state criterion?

- how close together are the k-clusterings defined by the hierarchical clustering

\[
\text{hcost} = \sum_{i=1}^{n} w_i \text{cost}(C_i)
\]

- weighted mean of \(k \)-clusterings

\[
\text{cost}(C_k) = \sum_{j=1}^{k} \sum_{i \in S_j} \| x_i - \mu(S_j) \|^2
\]

- sum of squared distances from cluster centers

SS-Hierarchical vs. Ward’s

<table>
<thead>
<tr>
<th>Yeast gene expression data set</th>
<th>SS-Hierarchical Greedy, Ward’s initialize</th>
<th>Ward’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 points</td>
<td>21.59</td>
<td>21.99</td>
</tr>
<tr>
<td></td>
<td>8 iterations</td>
<td></td>
</tr>
<tr>
<td>100 points</td>
<td>411.83</td>
<td>444.15</td>
</tr>
<tr>
<td></td>
<td>233 iterations</td>
<td></td>
</tr>
<tr>
<td>500 points</td>
<td>5276.30</td>
<td>5570.95</td>
</tr>
<tr>
<td></td>
<td>? iterations</td>
<td></td>
</tr>
</tbody>
</table>

Local search for mancala?