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Uninformed Search 

CS151 
David Kauchak 

Fall 2010 

Adapted from notes from: 
Sara Owsley Sood, Eric Eaton 

Happy labor day! Administrative 
  Send me fun stuff! 
  Written problems will be posted today 
  Programming assignment 1 due before class on Wed. 
  TA office hours posted: 

  Mon 7-9pm 
  Tue 7-9pm 
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How do we make a computer "smart?" 
Computer,  

clean the house! 

This one's got 
no chance… 

Um… OK…?? 

Search 
Reasoning with knowledge 

and uncertainty 

Fundamental problem of AI 

Reasoning with 
Utility 

Learning 

Many different ways 
of making an agent  

intelligent 

Today: search 
  Brute force approach 
  Very unlikely how humans do it 

  Enumerate out possibilities in a reasonable order 

Think like a human  
Cognitive Modeling 

Think rationally 
Logic-based Systems 

Act like a human 
Turing Test 

Act rationally 
Rational Agents 

What is an “agent”? 

  Human agent 
  sensors = eyes, ears, etc 
  actuators = hands, legs, mouth, etc 

  Software agent 
  sensors = any input devices - keyboard gives it keystrokes, 

commands over the network, files give it text or data 
  actuators = any output devices - using the screen to display 

things, pass things over the network, write things to files, etc 

“anything that can be viewed as perceiving its 
environment through sensors and acting upon that 
environment through actuators” 
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search agents 
  Search agent is an agent that approaches problem solving 

via search 
  To accomplish a task: 

1.  Formulate problem and goal 
2.  Search for a sequence of actions that will lead to the goal (the 

policy) 
3.  Execute the actions one at a time 

done offline! 

Formulating the problem: 

What information does a search agent 
need to know to plan out a solution? 

Formulating the problem: 
  Initial state: where are we starting from 

  what are the states? 

  Actions: what are the possible actions 
  Transition model: aka state-space, mapping from action 

x state to state 
  Goal/goal test:  what is the end result we’re trying to 

achieve? 
  Cost: what are the costs of the different actions 

Let’s start with our vacuum cleaner example 

  State space 
  Just two possible spaces in the house (though this generalizes 

easily to more) 
  each space can either be dirty or clean 
  vaccum is in one space at a time 
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Let’s start with our vacuum cleaner example 

  State space 
  Just two possible spaces in the house (though this generalizes 

easily to more) 
  each space can either be dirty or clean 
  vaccum is in one space at a time 

How many states? 

Vacuum world 

Only 8 states (spaces^3) 

Vacuum world 

goal state(s)? 

Vacuum world 
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Vacuum world 
  Actions? 

  move left 
  move right 
  suck 
  no-op 

Vacuum world: 
state space/transition model 

Problem characteristics 
  Fully observable vs. partially observable 

  do we have access to all of the relevant information 
  noisy information, inaccurate sensors, missing information 

  Deterministic vs. non-deterministic (stochastic) 
  outcome of an action are not always certain 
  probabilistic sometimes 

  Known/unknown environment 
  Do we know a priori what the problem space is like (e.g. do 

we have a map) 

Search problem types 
  Deterministic, fully observable 

  Agent knows exactly which state it will be in 
  solution is a sequence of actions 

  Non-observable  sensorless problem 
  Agent may have no idea where it is 
  solution is still a sequence 

  Non-deterministic and/or partially observable  contingency 
problem 
  percepts provide new information about current state 
  often interleave search, execution 

  Unknown state space  exploration problem 
  this is how roomba works 
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Example: vacuum world 

  Deterministic, fully 
observable 

  start in #5. Solution? 

Example: vacuum world 
  Sensorless 
  start in  

{1,2,3,4,5,6,7,8} 
Solution? 

Example: Vacuum world 

  Non-deterministic and/or partially observable  
  Nondeterministic: Suck may  

dirty a clean carpet 
  Partially observable: location,  

dirt at current location. 
  Percept: [L, Clean],  

i.e., start in #5 or #7 
Solution?  

Vacuum world 
  Cost? 
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Some example problems 

 Toy problems and micro-worlds 
  8-Puzzle 
  Missionaries and Cannibals 
  Cryptarithmetic 
  Remove 5 Sticks 
  Water Jug Problem 

 Real-world problems 

Another problem: 8-Puzzle 

8-puzzle 

 goal 
 states? 
 actions? 
 path cost? 

8-Puzzle 
  state:   

  all 3 x 3 configurations of the tiles on the board  

  actions:  
  Move Blank Square Left, Right, Up or Down.  
  This is a more efficient encoding than moving each of the 8 

distinct tiles 

  path cost: 
  +1 for each action 
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The 8-Queens Problem  

State transition:  ? 

Initial State:  ? 

Actions:  ? 

Goal:  Place eight queens on a 
chessboard such that no queen 
attacks any other! 

Missionaries and Cannibals 
Three missionaries and three cannibals wish to cross the river.  They 
have a small boat that will carry up to two people.  Everyone can 
navigate the boat.  If at any time the Cannibals outnumber the 
Missionaries on either bank of the river, they will eat the Missionaries.  
Find the smallest number of crossings that will allow everyone to cross 
the river safely. 

Cryptarithmetic 

  Find an assignment of digits (0, ..., 9) to letters so that 
a given arithmetic expression is true.  examples: SEND 
+ MORE = MONEY and 

 FORTY     Solution:  29786    


+  TEN                  850


+  TEN                  850


 -----                -----


 SIXTY                31486


F=2, O=9, R=7, etc. 

Remove 5 Sticks 

 Given the following 
configuration of sticks, 
remove exactly 5 sticks in 
such a way that the 
remaining configuration 
forms exactly 3 squares.  
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Water Jug Problem 

Given a full 5-gallon jug and a full 2-gallon jug, fill the 2-gallon jug 
with exactly one gallon of water. 

5 2 

Some real-world problems 
  Route finding 

  directions, maps 
  computer networks 
  airline travel 

  VLSI layout 
  Touring (traveling salesman) 
  Agent planning 

Search algorithms 
  We’ve defined the problem 
  Now we want to find the solution! 
  Use search techniques 

  offline, simulated exploration of state space by generating 
successors of already-explored states (a.k.a. expanding states) 

  Start at the initial state and search for a goal state 

  What are candidate search techniques? 
  BFS 
  DFS 
  Uniform-cost search 
  Depth limited DFS 
  Depth-first iterative deepening 

Finding the path: Tree search algorithms 

  Basic idea: 
  keep a set of nodes to visit next (frontier) 
  pick a node from this set 
  check if it’s the goal state 
  if not, expand out adjacent nodes and repeat 

def treeSearch(start): 
  add start to the frontier  
  while frontier isn’t empty: 
    get the next node from the frontier 

  if node contains goal state: 
  return solution   
 else: 
  expand node and add resulting nodes to frontier 
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BFS and DFS 

def treeSearch(start): 
  add start to the frontier  
  while frontier isn’t empty: 
    get the next node from the frontier 

  if node contains goal state: 
  return solution   
 else: 
  expand node and add resulting nodes to frontier 

How do we get BFS and DFS from this? 

Breadth-first search 
  Expand shallowest unexpanded node 
  Nodes are expanded a level at a time (i.e. all nodes at a 

given depth) 
  Implementation: 

  frontier is a FIFO queue, i.e., new successors go at end 

frontier 

Depth-first search 

  Expand deepest unexpanded node 
  Implementation: 

  frontier = LIFO queue, i.e., put successors at front 

frontier 

Search algorithm properties 
  Time (using Big-O) 
  Space (using Big-O) 
  Complete 

  If a solution exists, will we find it? 

  Optimal 
  If we return a solution, will it be the best/optimal solution 

  A divergence from data structures 
  we generally won’t use V and E to define time and space.  Why? 

  Often V and E are infinite! 
  Instead, we often use the branching factor (b) and depth (d) 
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Activity 
  Analyze DFS and BFS according to the criteria time, 

space, completeness and optimality 
(for time and space, analyze in terms of b, d, and m (max depth); 

for complete and optimal - simply YES or NO) 
  Which strategy would you use and why? 

  Brainstorm improvements to DFS and BFS 

BFS 
  Time: O(bd) 

  Space: O(bd) 

  Complete = YES 

  Optimal = YES if action costs are fixed, NO otherwise   

Time and Memory requirements for BFS 

Depth Nodes Time Memory 

2 1100 .11 sec 1 MB 

4 111,100 11 sec 106 MB 

6 107 19 min 10 GB 

8 109 31 hours 1 terabyte 

10 1011 129 days 101 terabytes 

12 1013 35 years 10 petabytes 

14 1015 3,523 years 1 exabyte 

BFS with b=10, 10,000 nodes/sec; 10 bytes/node 

DFS 
  Time: O(bm) 

  Space: O(bm) 

  Complete = YES, if space is finite (and no circular paths), 
NO otherwise 

  Optimal = NO 
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Problems with BFS and DFS 
  BFS 

  doesn’t take into account costs 
  memory!  

  DFS 
  doesn’t take into account costs 
  not optimal 
  can’t handle infinite spaces 
  loops 

Uniform-cost search 

  Expand unexpanded node with the smallest path cost, 
g(x) 

  Implementation: 
  frontier = priority queue ordered by path cost 
  similar to Dijkstra’s algorithm 

  Equivalent to breadth-first if step costs all equal 

Uniform-cost search 
  Time? and Space? 

  dependent on the costs and optimal path cost, so cannot be 
represented in terms of b and d 

  Space will still be expensive (e.g. take uniform costs) 

  Complete? 
  YES, assuming costs > 0 

  Optimal? 
  Yes, assuming costs > 0 

  This helped us tackle the issue of costs, but still going to 
be expensive from a memory standpoint! 

Ideas? 

Can we combined the optimality and 
completeness of BFS with the memory of DFS? 

+ = 
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Depth limited DFS 

  DFS, but with a depth limit L specified 
  nodes at depth L are treated as if they have no successors 
  we only search down to depth L 

  Time? 
  O(b^L) 

  Space? 
  O(bL) 

  Complete? 
  No, if solution is longer than L 

  Optimal 
  No, for same reasons DFS isn’t 

Ideas? 

Iterative deepening search 

For depth 0, 1, …., ∞ 
run depth limited DFS 
if solution found, return result 

  Blends the benefits of BFS and DFS 
  searches in a similar order to BFS 
  but has the memory requirements of DFS 

  Will find the solution when L is the depth of the 
shallowest goal 

Iterative deepening search L =0 
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Iterative deepening search L =1 Iterative deepening search L =2 

Iterative deepening search L =3 Time? 
  L = 0:  1 
  L = 1:  1 + b 
  L = 2:  1 + b + b2 
  L = 3:  1 + b + b2 + b3 
  … 
  L = d:  1 + b + b2 + b3 + … + bd 
  Overall: 

  d(1) + (d-1)b + (d-2)b2 + (d-3)b3 + … + bd 

  O(bd) 
  the cost of the repeat of the lower levels is subsumed by the 

cost at the highest level  
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Properties of iterative deepening search 
  Space?  

  O(bd) 

  Complete?  
  Yes 

  Optimal?  
  Yes, if step cost = 1 

Missionaries and Cannibals Solution 

                                  Near side     Far side


0 Initial setup:                   MMMCCC  B        -


1 Two cannibals cross over:        MMMC          B  CC


2 One comes back:                  MMMCC   B        C


3 Two cannibals go over again:     MMM           B  CCC


4 One comes back:                  MMMC    B        CC


5 Two missionaries cross:          MC            B  MMCC


6 A missionary & cannibal return:  MMCC    B        MC


7 Two missionaries cross again:    CC            B  MMMC


8 A cannibal returns:              CCC     B        MMM


9 Two cannibals cross:             C             B  MMMCC


10 One returns:                    CC      B        MMMC


11 And brings over the third:      -             B  MMMCCC


Water Jug Problem 

  State = (x,y), where x is 
the number of gallons 
of water in the 5-gallon 
jug and y is # of gallons 
in the 2-gallon jug  

  Initial State = (5,2)  

  Goal State = (*,1), 
where * means any 
amount  

Name Cond. Transition Effect 

Empty5 – (x,y)→(0,y) Empty 5-gal. 
jug 

Empty2 – (x,y)→(x,0) Empty 2-gal. 
jug 

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal. 
into 5-gal. 

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal. 
into 2-gal. 

5to2part y < 2 (1,y)→(0,y+1) Pour partial 
5-gal. into 2-
gal. 

Operator table 

5 2 


