
9/6/10

1

http://blog.lib.umn.edu/torre107/si/pics/superficialintelligence2.jpg

Uninformed Search

CS151
David Kauchak

Fall 2010

Adapted from notes from:
Sara Owsley Sood, Eric Eaton

Happy labor day! Administrative
  Send me fun stuff!
  Written problems will be posted today
  Programming assignment 1 due before class on Wed.
  TA office hours posted:

  Mon 7-9pm
  Tue 7-9pm

9/6/10

2

How do we make a computer "smart?"
Computer,

clean the house!

This one's got
no chance…

Um… OK…??

Search
Reasoning with knowledge

and uncertainty

Fundamental problem of AI

Reasoning with
Utility

Learning

Many different ways
of making an agent

intelligent

Today: search
  Brute force approach
  Very unlikely how humans do it

  Enumerate out possibilities in a reasonable order

Think like a human
Cognitive Modeling

Think rationally
Logic-based Systems

Act like a human
Turing Test

Act rationally
Rational Agents

What is an “agent”?

  Human agent
  sensors = eyes, ears, etc
  actuators = hands, legs, mouth, etc

  Software agent
  sensors = any input devices - keyboard gives it keystrokes,

commands over the network, files give it text or data
  actuators = any output devices - using the screen to display

things, pass things over the network, write things to files, etc

“anything that can be viewed as perceiving its
environment through sensors and acting upon that
environment through actuators”

9/6/10

3

search agents
  Search agent is an agent that approaches problem solving

via search
  To accomplish a task:

1.  Formulate problem and goal
2.  Search for a sequence of actions that will lead to the goal (the

policy)
3.  Execute the actions one at a time

done offline!

Formulating the problem:

What information does a search agent
need to know to plan out a solution?

Formulating the problem:
  Initial state: where are we starting from

  what are the states?

  Actions: what are the possible actions
  Transition model: aka state-space, mapping from action

x state to state
  Goal/goal test: what is the end result we’re trying to

achieve?
  Cost: what are the costs of the different actions

Let’s start with our vacuum cleaner example

  State space
  Just two possible spaces in the house (though this generalizes

easily to more)
  each space can either be dirty or clean
  vaccum is in one space at a time

9/6/10

4

Let’s start with our vacuum cleaner example

  State space
  Just two possible spaces in the house (though this generalizes

easily to more)
  each space can either be dirty or clean
  vaccum is in one space at a time

How many states?

Vacuum world

Only 8 states (spaces^3)

Vacuum world

goal state(s)?

Vacuum world

9/6/10

5

Vacuum world
  Actions?

  move left
  move right
  suck
  no-op

Vacuum world:
state space/transition model

Problem characteristics
  Fully observable vs. partially observable

  do we have access to all of the relevant information
  noisy information, inaccurate sensors, missing information

  Deterministic vs. non-deterministic (stochastic)
  outcome of an action are not always certain
  probabilistic sometimes

  Known/unknown environment
  Do we know a priori what the problem space is like (e.g. do

we have a map)

Search problem types
  Deterministic, fully observable

  Agent knows exactly which state it will be in
  solution is a sequence of actions

  Non-observable  sensorless problem
  Agent may have no idea where it is
  solution is still a sequence

  Non-deterministic and/or partially observable  contingency
problem
  percepts provide new information about current state
  often interleave search, execution

  Unknown state space  exploration problem
  this is how roomba works

9/6/10

6

Example: vacuum world

  Deterministic, fully
observable

  start in #5. Solution?

Example: vacuum world
  Sensorless
  start in

{1,2,3,4,5,6,7,8}
Solution?

Example: Vacuum world

  Non-deterministic and/or partially observable
  Nondeterministic: Suck may

dirty a clean carpet
  Partially observable: location,

dirt at current location.
  Percept: [L, Clean],

i.e., start in #5 or #7
Solution?

Vacuum world
  Cost?

9/6/10

7

Some example problems

 Toy problems and micro-worlds
  8-Puzzle
  Missionaries and Cannibals
  Cryptarithmetic
  Remove 5 Sticks
  Water Jug Problem

 Real-world problems

Another problem: 8-Puzzle

8-puzzle

 goal
 states?
 actions?
 path cost?

8-Puzzle
  state:

  all 3 x 3 configurations of the tiles on the board

  actions:
  Move Blank Square Left, Right, Up or Down.
  This is a more efficient encoding than moving each of the 8

distinct tiles

  path cost:
  +1 for each action

9/6/10

8

The 8-Queens Problem

State transition: ?

Initial State: ?

Actions: ?

Goal: Place eight queens on a
chessboard such that no queen
attacks any other!

Missionaries and Cannibals
Three missionaries and three cannibals wish to cross the river. They
have a small boat that will carry up to two people. Everyone can
navigate the boat. If at any time the Cannibals outnumber the
Missionaries on either bank of the river, they will eat the Missionaries.
Find the smallest number of crossings that will allow everyone to cross
the river safely.

Cryptarithmetic

  Find an assignment of digits (0, ..., 9) to letters so that
a given arithmetic expression is true. examples: SEND
+ MORE = MONEY and

 FORTY Solution: 29786

+ TEN 850

+ TEN 850

 ----- -----

 SIXTY 31486

F=2, O=9, R=7, etc.

Remove 5 Sticks

 Given the following
configuration of sticks,
remove exactly 5 sticks in
such a way that the
remaining configuration
forms exactly 3 squares.

9/6/10

9

Water Jug Problem

Given a full 5-gallon jug and a full 2-gallon jug, fill the 2-gallon jug
with exactly one gallon of water.

5 2

Some real-world problems
  Route finding

  directions, maps
  computer networks
  airline travel

  VLSI layout
  Touring (traveling salesman)
  Agent planning

Search algorithms
  We’ve defined the problem
  Now we want to find the solution!
  Use search techniques

  offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a. expanding states)

  Start at the initial state and search for a goal state

  What are candidate search techniques?
  BFS
  DFS
  Uniform-cost search
  Depth limited DFS
  Depth-first iterative deepening

Finding the path: Tree search algorithms

  Basic idea:
  keep a set of nodes to visit next (frontier)
  pick a node from this set
  check if it’s the goal state
  if not, expand out adjacent nodes and repeat

def treeSearch(start):
 add start to the frontier
 while frontier isn’t empty:
 get the next node from the frontier

 if node contains goal state:
 return solution
 else:
 expand node and add resulting nodes to frontier

9/6/10

10

BFS and DFS

def treeSearch(start):
 add start to the frontier
 while frontier isn’t empty:
 get the next node from the frontier

 if node contains goal state:
 return solution
 else:
 expand node and add resulting nodes to frontier

How do we get BFS and DFS from this?

Breadth-first search
  Expand shallowest unexpanded node
  Nodes are expanded a level at a time (i.e. all nodes at a

given depth)
  Implementation:

  frontier is a FIFO queue, i.e., new successors go at end

frontier

Depth-first search

  Expand deepest unexpanded node
  Implementation:

  frontier = LIFO queue, i.e., put successors at front

frontier

Search algorithm properties
  Time (using Big-O)
  Space (using Big-O)
  Complete

  If a solution exists, will we find it?

  Optimal
  If we return a solution, will it be the best/optimal solution

  A divergence from data structures
  we generally won’t use V and E to define time and space. Why?

  Often V and E are infinite!
  Instead, we often use the branching factor (b) and depth (d)

9/6/10

11

Activity
  Analyze DFS and BFS according to the criteria time,

space, completeness and optimality
(for time and space, analyze in terms of b, d, and m (max depth);

for complete and optimal - simply YES or NO)
  Which strategy would you use and why?

  Brainstorm improvements to DFS and BFS

BFS
  Time: O(bd)

  Space: O(bd)

  Complete = YES

  Optimal = YES if action costs are fixed, NO otherwise

Time and Memory requirements for BFS

Depth Nodes Time Memory

2 1100 .11 sec 1 MB

4 111,100 11 sec 106 MB

6 107 19 min 10 GB

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

BFS with b=10, 10,000 nodes/sec; 10 bytes/node

DFS
  Time: O(bm)

  Space: O(bm)

  Complete = YES, if space is finite (and no circular paths),
NO otherwise

  Optimal = NO

9/6/10

12

Problems with BFS and DFS
  BFS

  doesn’t take into account costs
  memory! 

  DFS
  doesn’t take into account costs
  not optimal
  can’t handle infinite spaces
  loops

Uniform-cost search

  Expand unexpanded node with the smallest path cost,
g(x)

  Implementation:
  frontier = priority queue ordered by path cost
  similar to Dijkstra’s algorithm

  Equivalent to breadth-first if step costs all equal

Uniform-cost search
  Time? and Space?

  dependent on the costs and optimal path cost, so cannot be
represented in terms of b and d

  Space will still be expensive (e.g. take uniform costs)

  Complete?
  YES, assuming costs > 0

  Optimal?
  Yes, assuming costs > 0

  This helped us tackle the issue of costs, but still going to
be expensive from a memory standpoint!

Ideas?

Can we combined the optimality and
completeness of BFS with the memory of DFS?

+ =

9/6/10

13

Depth limited DFS

  DFS, but with a depth limit L specified
  nodes at depth L are treated as if they have no successors
  we only search down to depth L

  Time?
  O(b^L)

  Space?
  O(bL)

  Complete?
  No, if solution is longer than L

  Optimal
  No, for same reasons DFS isn’t

Ideas?

Iterative deepening search

For depth 0, 1, …., ∞
run depth limited DFS
if solution found, return result

  Blends the benefits of BFS and DFS
  searches in a similar order to BFS
  but has the memory requirements of DFS

  Will find the solution when L is the depth of the
shallowest goal

Iterative deepening search L =0

9/6/10

14

Iterative deepening search L =1 Iterative deepening search L =2

Iterative deepening search L =3 Time?
  L = 0: 1
  L = 1: 1 + b
  L = 2: 1 + b + b2
  L = 3: 1 + b + b2 + b3
  …
  L = d: 1 + b + b2 + b3 + … + bd
  Overall:

  d(1) + (d-1)b + (d-2)b2 + (d-3)b3 + … + bd

  O(bd)
  the cost of the repeat of the lower levels is subsumed by the

cost at the highest level

9/6/10

15

Properties of iterative deepening search
  Space?

  O(bd)

  Complete?
  Yes

  Optimal?
  Yes, if step cost = 1

Missionaries and Cannibals Solution

 Near side Far side

0 Initial setup: MMMCCC B -

1 Two cannibals cross over: MMMC B CC

2 One comes back: MMMCC B C

3 Two cannibals go over again: MMM B CCC

4 One comes back: MMMC B CC

5 Two missionaries cross: MC B MMCC

6 A missionary & cannibal return: MMCC B MC

7 Two missionaries cross again: CC B MMMC

8 A cannibal returns: CCC B MMM

9 Two cannibals cross: C B MMMCC

10 One returns: CC B MMMC

11 And brings over the third: - B MMMCCC

Water Jug Problem

  State = (x,y), where x is
the number of gallons
of water in the 5-gallon
jug and y is # of gallons
in the 2-gallon jug

  Initial State = (5,2)

  Goal State = (*,1),
where * means any
amount

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal.
jug

Empty2 – (x,y)→(x,0) Empty 2-gal.
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal.
into 5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal.
into 2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5-gal. into 2-
gal.

Operator table

5 2

