

http://www.youtube.com/watch?v=OR_-Y-ellQo

Machine learning: Unsupervised learning

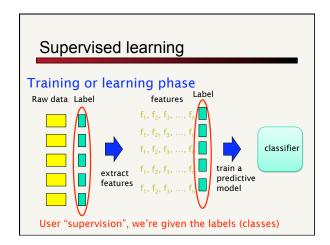
David Kauchak cs160 Fall 2009 adapted from

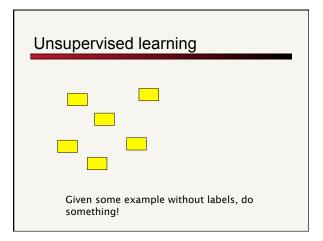
Machine learning code

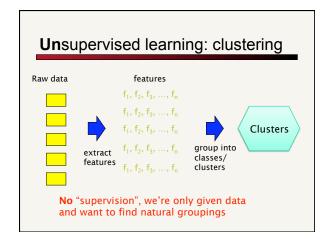
- Weka
 - Java based
 - Tons of approaches
 - Good for playing with different approaches, but faster/better of individual approaches can be found
 - http://www.cs.waikato.ac.nz/ml/weka/
- SVMs
 - SVMLight (C-based... fast)
 http://www.cs.comell.edu/People/ti/sym_li
 - LIBSVM (Java)
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Others
 - many others out there... search for them
 - e.g. PyML (in Python, but I've never used it)

Administrative

- Keep up with the written homeworks
- Project proposals due this Friday
- Assignment 5 due next Wednesday!
- Will have assignment 4 back to you soon...
 - and literature reviews



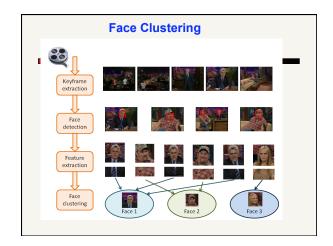


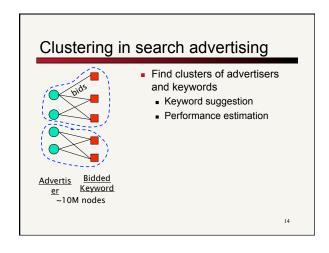


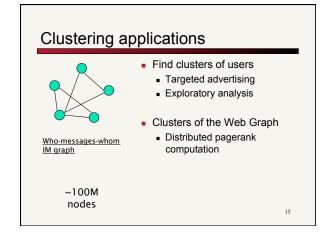
Unsupervised learning: modeling

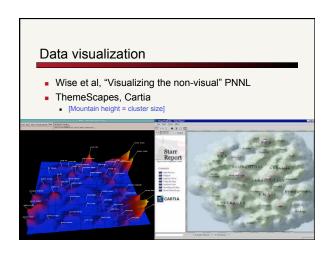
- Most frequently, when people think of unsupervised learning they think clustering
- Another category: learning probabilities/parameters for models without supervision
 - Learn a translation dictionary
 - Learn an HMM from just sequences of data (i.e. not given the states)
 - Learn a grammar for a language
 - Learn the social graph

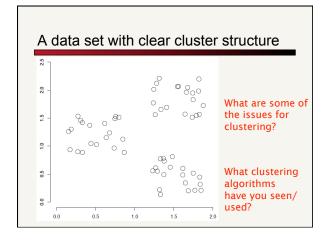
Clustering Clustering: the process of grouping a set of objects into classes of similar objects Applications?











Issues for clustering

- Representation for clustering
 - How do we represent an example
 - features, etc.
 - Similarity/distance between examples
- Flat clustering or hierarchical
- Number of clusters
 - Fixed a priori
 - Data driven?

Clustering Algorithms

- Flat algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - Model based clustering
 - Spectral clustering
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive

Hard vs. soft clustering

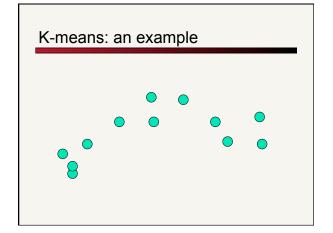
- Hard clustering: Each example belongs to exactly one cluster
- Soft clustering: An example can belong to more than one cluster (probabilistic)
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes

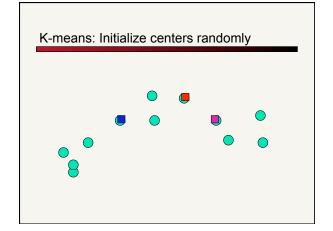
K-Means

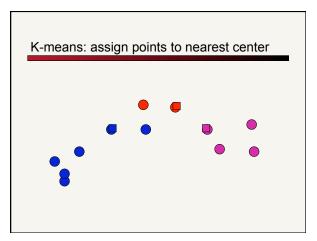
- Most well-known and popular clustering algorithm
- Start with some initial cluster centers
- Iterate:

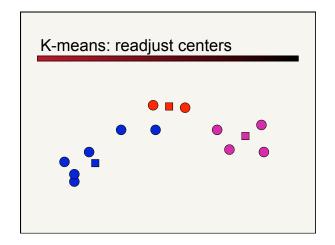
 - Assign/cluster each example to closest center
 Recalculate centers as the mean of the points in a cluster, c:

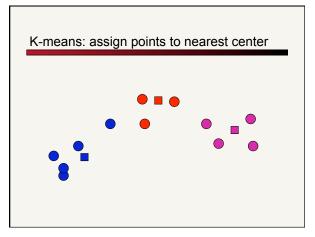
$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{x \in c} \vec{x}$$

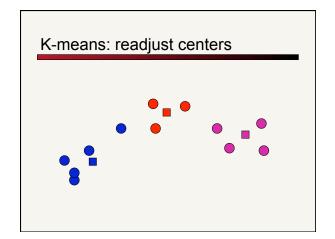


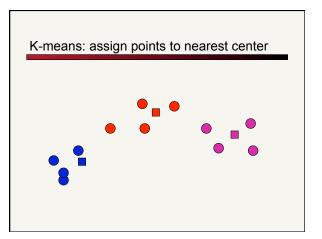


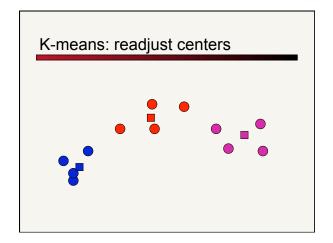


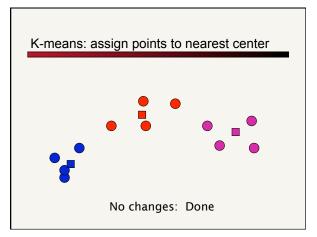






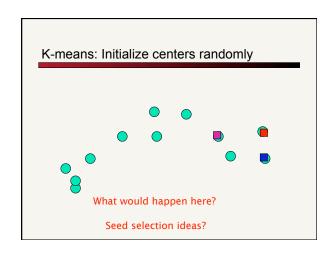






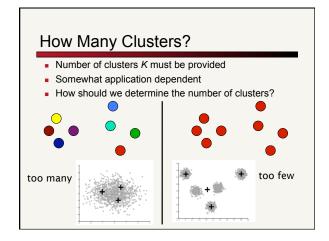
K-means variations/parameters

- Initial (seed) cluster centers
- Convergence
 - A fixed number of iterations
 - partitions unchanged
 - Cluster centers don't change
- K



Seed Choice

- Results can vary drastically based on random seed selection
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings
- Common heuristics
 - Random centers in the space
 - Randomly pick examples
 - Points least similar to any existing center
 - Try out multiple starting points
 - Initialize with the results of another clustering method

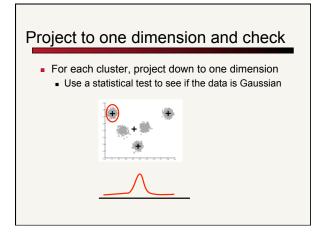


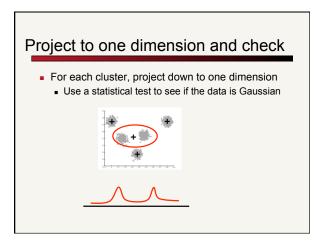
One approach

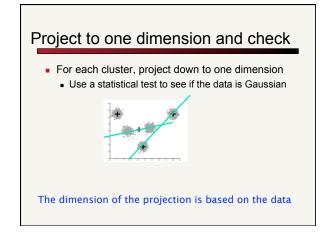
- Assume data is Gaussian (i.e. spherical)
- Test for this
 - Testing in high dimensions doesn't work well
 - Testing in lower dimensions does work well

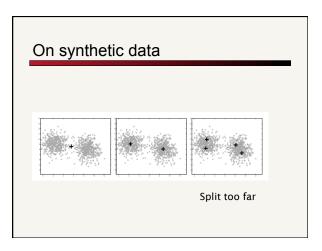
Project to one dimension and check

- For each cluster, project down to one dimension
 - Use a statistical test to see if the data is Gaussian









Compared to other approaches

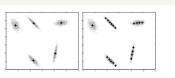


Figure 4: 2-d synthetic dataset with 5 true clusters. On the left, G-means correctly chooses 5 centers and deals well with non-spherical data. On the right, the BIC causes X-means to overfit the data, choosing 20 unevenly distributed clusters.

http://cs.baylor.edu/~hamerly/papers/nips_03.pdf

K-Means time complexity

- Variables: K clusters, n data points, m features/dimensions, I iterations
- What is the runtime complexity?
 - Computing distance between two points
 - Reassigning clusters
 - Computing new centers
 - Iterate...

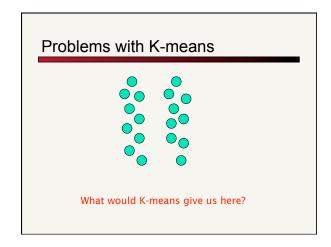
K-Means time complexity

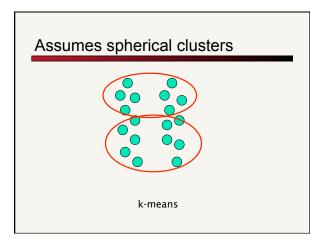
- Variables: K clusters, n data points, m features/dimensions, I iterations
- What is the runtime complexity?
 - Computing distance between two points is O(m) where m is the dimensionality of the vectors.
 - Reassigning clusters: O(Kn) distance computations, or O(Knm)
 - Computing centroids: Each points gets added once to some centroid: O(nm)
 - Assume these two steps are each done once for I iterations: O(Iknm)

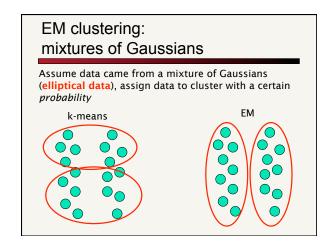
In practice, K-means converges quickly and is fairly fast

Problems with K-means

- Determining K is challenging
- Spherical assumption about the data (distance to cluster center)
- Hard clustering isn't always right
- Greedy approach







EM is a general framework

- Create an initial model, θ'
 - Arbitrarily, randomly, or with a small set of training examples
- $\begin{tabular}{ll} \blacksquare & Use the model θ' to obtain another model θ such that \\ & \sum_i log P_\theta(data_i) > \sum_i log P_\theta(data_i) & i.e. better models data \\ & (increased log likelihood) \\ \end{tabular}$
- Let θ ' = θ and repeat the above step until reaching a local maximum
 - Guaranteed to find a better model after each iteration

Where else have you seen EM?

EM shows up all over the place

- Training HMMs (Baum-Welch algorithm)
- Learning probabilities for Bayesian networks
- EM-clustering
- Learning word alignments for language translation
- Learning Twitter friend network
- Genetics
- Finance
- Anytime you have a model and unlabeled data!

E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

 $p(x|\theta_c)$ What is the probability of each point belonging to each cluster?

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c

Just like NB maximum likelihood estimation, except we use fractional counts instead of whole counts

Similar to K-Means

- Iterate:
 - Assign/cluster each point to closest center

Expectation: Given the current model, figure out the expected probabilities of the points to each cluster $p(x|\theta_c)$

Recalculate centers as the mean of the points in a cluster

Maximization: Given the probabilistic assignment of all the points, estimate a new model. θ .

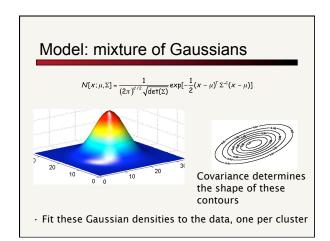
E and M steps

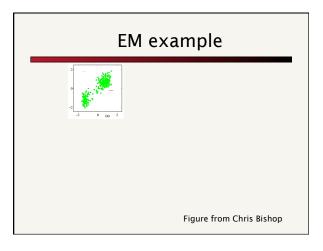
Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

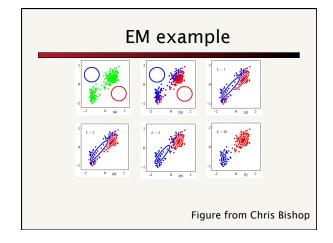
Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c

Iterate:

each iterations increases the likelihood of the data and guaranteed to converge (though to a local optimum)!







ΕM

- EM is a general purpose approach for training a model when you don't have labels
- Not just for clustering!
 - K-means is just for clustering
- One of the most general purpose unsupervised approaches
 - can be hard to get right!

Finding Word Alignments

- ... la maison ... la maison bleue ... la fleur ...
- ... the house ... the blue house ... the flower ...
- In machine translation, we train from pairs of translated sentences
- Often useful to know how the words align in the sentences
- Use EM!
 - learn a model of P(french-word | english-word)

Finding Word Alignments

... la maison ... la maison bleue ... la fleur ...

the house ... the blue house ... the flower ...

All word alignments equally likely

All P(french-word | english-word) equally likely

Finding Word Alignments

... la maison ... la maison bleue ... la fleur ...
the house ... the blue house ... the flower ...

"la" and "the" observed to co-occur frequently, so P(la | the) is increased.

Finding Word Alignments

... la maison ... la maison bleue ... la fleur ...
the house ... the blue house ... the flower ...

"house" co-occurs with both "la" and "maison", but P(maison | house) can be raised without limit, to 1.0, while P(la | house) is limited because of "the"

(pigeonhole principle)

Finding Word Alignments

settling down after another iteration

Finding Word Alignments

Inherent hidden structure revealed by EM training! For details, see

- "A Statistical MT Tutorial Workbook" (Knight, 1999).
 - 37 easy sections, final section promises a free beer.
- "The Mathematics of Statistical Machine Translation" (Brown et al, 1993)
- Software: GIZA++

Statistical Machine Translation

P(maison | building) = 0.027 $P(maison \mid manson) = 0.020$

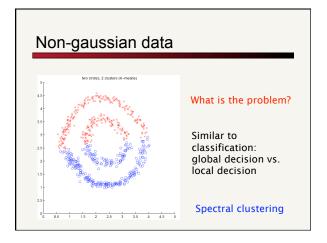
Estimating the model from training data

Discussion

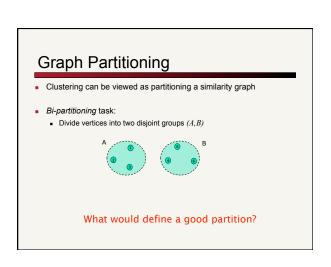
- How does an infant learning to understand and speak language fit into our model?
- How about learning to play tennis?
- How are these different/similar?

Other clustering algorithms

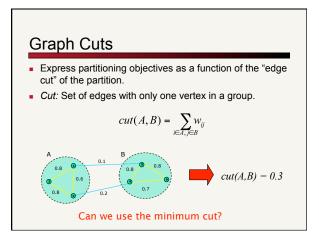
- K-means and EM-clustering are by far the most popular for clustering
- However, they can't handle all clustering tasks
- What types of clustering problems can't they handle?

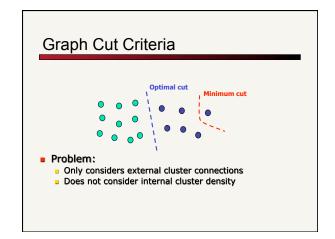


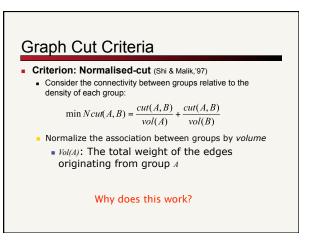
Similarity Graph Represent dataset as a weighted graph G(V,E)Data points: $\{x_1, x_2, ..., x_6\}$ V= $\{x_i\}$ Set of n vertices representing points E= $\{w_{ij}\}$ Set of weighted edges indicating pair-wise similarity between points What does clustering represent?

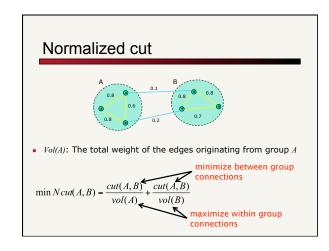


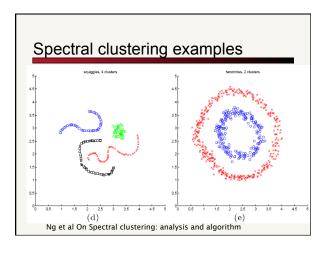
Clustering Objectives Traditional definition of a "good" clustering: within cluster should be highly similar. between different clusters should be highly dissimilar. Apply these objectives to our graph representation 1. Maximise weight of within-group connections 2. Minimise weight of between-group connections

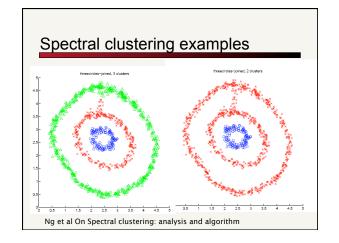


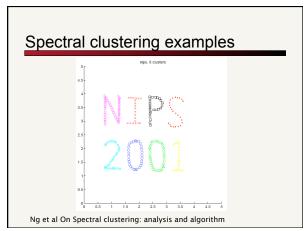






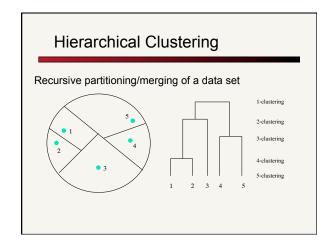






Hierarchical clustering

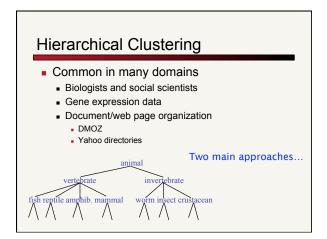
 We didn't cover this, but if you're interested, take a look through these slides for the common approaches



Pendogram Represents all partitionings of the data We can get a K clustering by looking at the connected components at any given level Frequently binary dendograms, but n-ary dendograms are generally easy to obtain with minor changes to the algorithms

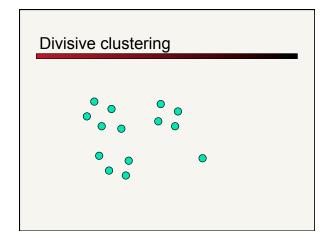
Advantages of hierarchical clustering

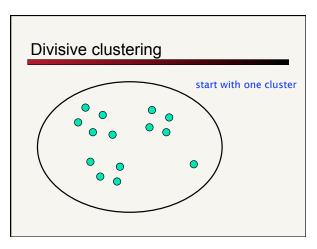
- Don't need to specify the number of clusters
- Good for data visualization
 - See how the data points interact at many levels
 - Can view the data at multiple levels of granularity
 - Understand how all points interact
- Specifies all of the K clusterings/partitions

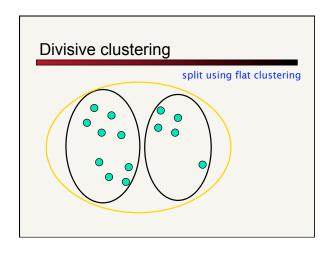


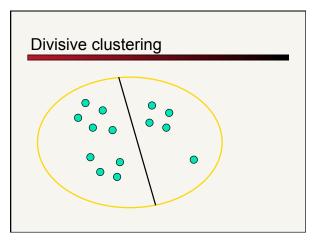
Divisive hierarchical clustering

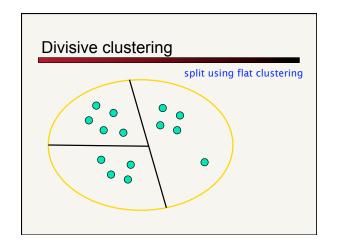
- Finding the best partitioning of the data is generally exponential in time
- Common approach:
 - Let **C** be a set of clusters
 - Initialize **C** to be the one-clustering of the data
 - While there exists a cluster c in C
 - remove c from C
 - partition c into 2 clusters using a flat clustering algorithm, $c_{\rm 1}$ and $c_{\rm 2}$
 - Add to c_1 and c_2 C
- Bisecting k-means

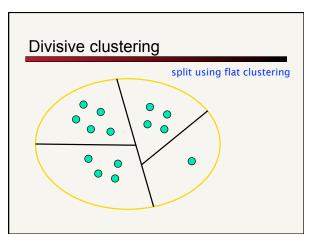


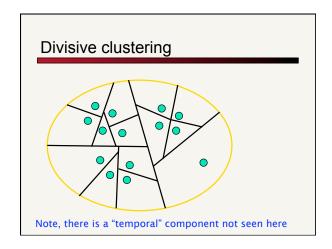






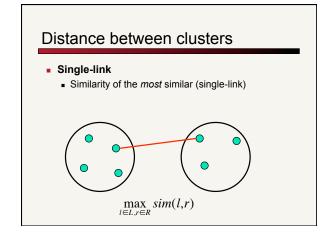


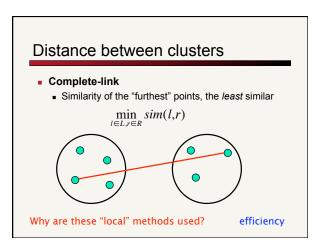


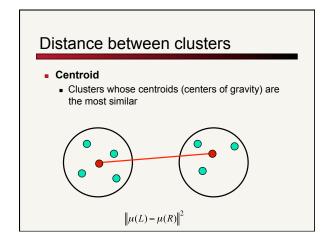


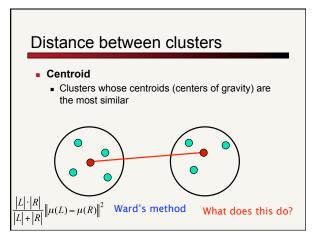
Hierarchical Agglomerative Clustering (HAC)

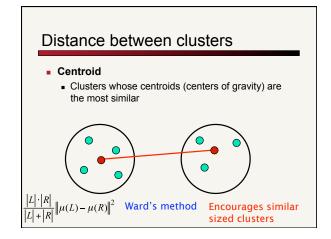
- Let **C** be a set of clusters
- Initialize C to be all points/docs as separate clusters
- While **C** contains more than one cluster
 - find c_1 and c_2 in **C** that are closest together
 - remove c_1 and c_2 from **C**
 - lacksquare merge c_1 and c_2 and add resulting cluster to ${f C}$
- The history of merging forms a binary tree or hierarchy
- How do we measure the distance between clusters?

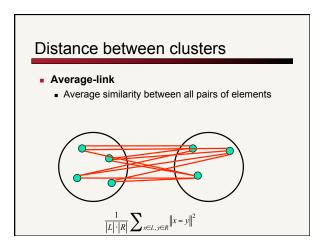


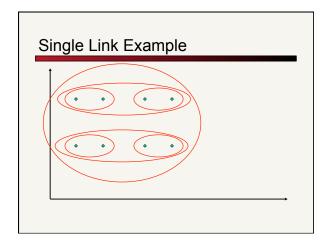


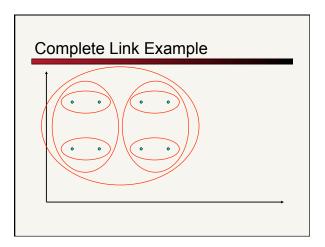


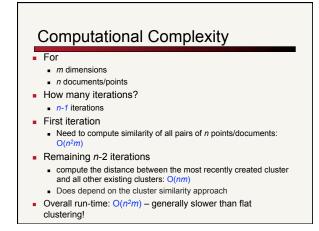


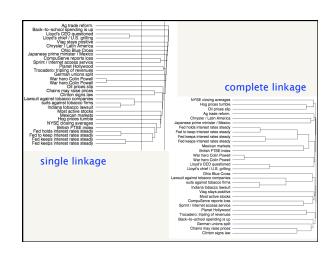












Problems with hierarchical clustering

