Math

- Machine learning often involves a lot of math
 - some aspects of AI also involve some familiarity
- Don’t let this be daunting
 - Many of you have taken more math than me
 - Gets better over time
 - Often, just have to not be intimidated

Learning

As an agent interacts with the world, it should learn about its environment
Last time

- Two classifiers
 - k-nearest neighbor
 - decision tree
 - good and bad?
- Bias vs. variance
 - a measure of the model
 - where do k-nn and decision trees fit on the bias/variance spectrum?

Separation by Hyperplanes

- A strong high-bias assumption is linear separability:
 - in 2 dimensions, can separate classes by a line
 - in higher dimensions, need hyperplanes

Hyperplanes

- A hyperplane is line/plane in a high dimensional space

What defines a hyperplane? What defines a line?

Hyperplanes

A hyperplane in an n-dimensional space is defined by n+1 values

\[0 = w_1 f_1 + w_2 f_2 + \ldots + w_n f_n + w_{n+1} \]

e.g. a line

\[0 = w_1 f_1 + w_2 f_2 + w_3 \quad f(x) = ax + b \]

or a plane

\[0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + w_4 \quad f(x,y) = ax + by + c \]
To classify:
\[\arg \max_C P(C \mid f_1, f_2, \ldots, f_n) \]

Another way to view this (for 2 classes):
\[d(f_1, f_2, \ldots, f_n) = \frac{P(c_1 \mid f_1, f_2, \ldots, f_n)}{P(c_2 \mid f_1, f_2, \ldots, f_n)} \]

Given \(d \) how would we classify?

\[\text{classify}(f_1, f_2, \ldots, f_n) = \begin{cases} c_1 & \text{if } d > 1 \\ c_2 & \text{if } d < 1 \end{cases} \]

We can take the log:
\[\text{classify}(f_1, f_2, \ldots, f_n) = \begin{cases} c_1 & \text{if } \log d > 0 \\ c_2 & \text{if } \log d < 0 \end{cases} \]

\[\log d(f_1, f_2, \ldots, f_n) = \log P(c_1 \mid f_1, f_2, \ldots, f_n) - \log P(c_2 \mid f_1, f_2, \ldots, f_n) \]

\[= \log P(f_1 \mid c_1)P(f_2 \mid c_1) \cdots P(f_n \mid c_1)p(c_1) \]
\[\quad \q
Lots of linear classifiers

• Many common text classifiers are linear classifiers
 – Naïve Bayes
 – Perceptron
 – Rocchio
 – Logistic regression
 – Support vector machines (with linear kernel)
 – Linear regression

• Despite this similarity, noticeable performance difference

How might algorithms differ?

Which Hyperplane?

lots of possible solutions

Which examples are important?

lots of possible solutions
Which examples are important?

Dealing with noise

A nonlinear problem

- A linear classifier like Naïve Bayes does badly on this task
- k-NN will do very well (assuming enough training data)
Linear classifiers: Which Hyperplane?

- Lots of possible solutions for a, b, c
- Support Vector Machine (SVM) finds an optimal solution
 - Maximizes the distance between the hyperplane and the “difficult points” close to decision boundary

Another intuition

- Think of it as trying to place a wide separator between the points.
- Will constrain the possible options

Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane
 - aka large margin classifiers
- Specified by a subset of training samples, the support vectors
- Posed as a quadratic programming problem
- Seen by many as the most successful current text classification method*

Margin maximization

but other discriminative methods often perform very similarly
Margin maximization

Measuring the margin

The support vectors define the hyperplane and the margin

How do we classify points given the hyperplane?

\[f(x_i) = \text{sign}(w^\top x_i + b) \]
Measuring the margin

How can we calculate margin?

Minimum of the distance from the hyperplane to any point(s) (specifically the support vectors)

Measuring the margin

Want to calculate r

$x' - x$ is perpendicular to hyperplane $w/|w|$ is the unit vector in direction of w $x' = x - rw/|w|$$ x'$ satisfies $w^T x' + b = 0$ because it’s on w^T So $w^T(x - rw/|w|) + b = 0$$ w^T x - w^T rw/|w| + b = 0$$ w^T x - w^T rw/|w||w| + b = 0$$ w^T x - w^T |w| + b = 0$$ r = w^T x - b$$ |w| = \sqrt{w^T w}$

Linear SVM Mathematically

The linearly separable case

- Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set $\{(x_i, y_i)\}$

$$w^T x_i + b \geq 1 \quad \text{if } y_i = 1$$

$$w^T x_i + b \leq -1 \quad \text{if } y_i = -1$$

- For support vectors, the inequality becomes an equality
- Then, since each example’s distance from the hyperplane is $r = y_i w^T x + b/|w|$
- The margin is:

$$\rho = \frac{2}{|w|}$$
Linear SVMs Mathematically (cont.)

- Then we can formulate the quadratic optimization problem:

\[
\text{Find } w \text{ and } b \text{ such that } \frac{1}{2} w^T w \text{ is maximized; and for all } \{(x_i, y_i)\}:
\]
\[
w^T x_i + b \geq 1 \text{ if } y_i = 1; \quad w^T x_i + b \leq -1 \text{ if } y_i = -1
\]

- A better formulation (\(\min ||w|| = \max 1/||w||\)):

\[
\text{Find } w \text{ and } b \text{ such that } \\
\Phi(w) = w^T w \text{ is minimized; } \\
\text{and for all } \{(x_i, y_i)\}:
\]
\[
y_i (w^T x_i + b) \geq 1
\]

Solving the Optimization Problem

- This is a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known
- Many ways exist for solving these

An LP example

maximize \(x_1 + 6x_2\)
subject to
\[
\begin{align*}
x_1 & \leq 200 \\
x_2 & \leq 300 \\
x_1 + x_2 & \leq 400 \\
x_1, x_2 & \geq 0
\end{align*}
\]

An LP example

maximize \(x_1 + 6x_2\)
subject to
\[
\begin{align*}
x_1 & \leq 200 \\
x_2 & \leq 300 \\
x_1 + x_2 & \leq 400 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Where is the feasibility region?
An LP example

maximize $x_1 + 6x_2$
subject to
$x_1 \leq 200$
$x_2 \leq 300$
$x_1 + x_2 \leq 400$
$x_1, x_2 \geq 0$

to maximize, move as far in this direction as the constraints allow

An LP example

maximize $x_1 + 6x_2$
subject to
$x_1 \leq 200$
$x_2 \leq 300$
$x_1 + x_2 \leq 400$
$x_1, x_2 \geq 0$

An LP example

maximize $x_1 + 6x_2$
subject to
$x_1 \leq 200$
$x_2 \leq 300$
$x_1 + x_2 \leq 400$
$x_1, x_2 \geq 0$

to maximize, move as far in this direction as the constraints allow

Soft Margin Classification

What about this problem?
Soft Margin Classification

Like to learn something like this, but our constraints won’t allow it 😞

Soft Margin Classification

Slack variables: allow it to make some mistakes, but penalize it

Soft Margin Classification Mathematically

Old:

Find w and b such that

$$\Phi(w) = \frac{1}{2} w^T w \text{ is minimized and for all } \{(x_i, y_i)\}$$

$$y_i (w^T x_i + b) \geq 1$$

With slack variables:

Find w and b such that

$$\Phi(w) = \frac{1}{2} w^T w + C \sum \xi_i \text{ is minimized and for all } \{(x_i, y_i)\}$$

$$y_i (w^T x_i + b) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \text{ for all } i$$

- allows us to make a mistake, but penalizes it
- C trades off noisiness vs. error

Linear SVMs: Summary

- Classifier is a *separating hyperplane*
 - large margin classifier: learn a hyperplane that maximally separates the examples
- Most “important” training points are support vectors; they define the hyperplane
- Quadratic optimization algorithm
Non-linear SVMs

- Datasets that are linearly separable (with some noise) work out great:

- But what are we going to do if the dataset is just too hard?

- How about … mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

- General idea: map original feature space to higher-dimensional feature space where the training set is separable:

The “Kernel Trick”

- The linear classifier relies on an inner product between vectors $K(x_i, x_j) = x_i^T x_j$

- If every datapoint is mapped into high-dimensional space via some transformation Φ: $x \mapsto \phi(x)$, the inner product becomes:

- A kernel function is some function that corresponds to an inner product in some expanded feature space.

Kernels

- Why use kernels?
 - Make non-separable problem separable.
 - Map data into better representational space.

- Common kernels
 - Linear
 - Polynomial $K(x, z) = (1 + x^T z)^d$
 - Gives feature conjunctions
 - Radial basis function (infinite dimensional space)

$$K(x_i, x_j) = e^{-||x_i - x_j||^2 / 2\sigma^2}$$
Demo

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

SVM implementations

- SVMLight (C)
- SVMLib (Java)

Switching gears: weighted examples

- Are all examples equally important?

Weak classifiers

- Sometimes, it can be intractable (or very expensive) to train a full classifier
- However, we can get some information using simple classifiers
- A weak classifier is any classifier that gets more than half of the examples right
 - not that hard to do
 - a weak classifier does better than random
- Ideas?
Decision stumps

- A decision stump is a common weak classifier
- Decision stump: 1 level decision tree:

```
  feature_i
   /   \
/     \|
class 1 class 2
```

Ensemble methods

- If one classifier is good, why not 10 classifiers, or 100?
- Ensemble methods combine different classifiers in a reasonable way to get at a better solution
 – similar to how we combined heuristic functions
- **Boosting** is one approach that combines multiple weak classifiers

Boosting

Start with equal weighted examples
Learn a weak classifier

Weights:

```
[  ] [  ] [  ] [  ] [  ]
```

Examples:

```
E1  E2  E3  E4  E5
```

Boosting

Weak_i

It will do well on some of our training examples and not so well on others

Weights:

```
[  ] [  ] [  ] [  ] [  ]
```

Examples:

```
E1  E2  E3  E4  E5
```
Boosting

Weak$_1$

We'd like to reweight the examples and learn another weak classifier. Ideas?

Weights:

Examples:

Boosting

Weak$_1$

Downweight ones that we're doing well, and upweight those that we're having problems with.

Weights:

Examples:

Boosting

Weak$_1$

Learn a new classifier based on the new set of weighted examples.

Weights:

Examples:

Boosting

Weak$_1$ Weak$_2$

Learn a new classifier based on the new set of weighted examples.

Weights:

Examples:
Boosting

• Continue this for some number of “rounds”
 – at each round we learn a new weak classifier
 – and then reweight the examples again

• Our final classifier is a weighted combination of these weak classifiers
• Adaboost is one common version of boosting
 – specifies how to reweight and how to combine learned classifiers
 – nice theoretical guarantees
 – tends not to have problems with overfitting
• http://cseweb.ucsd.edu/classes/fa01/cse291/AdaBoost.pdf

Classification: concluding thoughts

• Lots of classifiers out there
 – SVMs work very well on broad range of settings
• Many challenges still:
 – coming up with good features
 – preprocessing
 – picking the right kernel
 – learning hyper parameters (e.g. C for SVMs)
• Still a ways from computers “learning” in the traditional sense