
1

http://kottke.org/10/10/robot-beanbag-hand-can-grip-anything

David Kauchak, CS151, Fall 2010

Machine Learning

Math
•  Machine learning often involves a lot of math

–  some aspects of AI also involve some familiarity

•  Don’t let this be daunting
– Many of you have taken more math than me
– Gets better over time
– Often, just have to not be intimidated

Learning

environment
agent

?

sensors

actuators

As an agent interacts with the world, it should
learn about it’s environment

2

Last time

•  Two classifiers
–  k-nearest neighbor
–  decision tree
–  good and bad?

•  Bias vs. variance
–  a measure of the model
–  where do k-nn and decision trees fit on the bias/variance

spectrum?

Separation by Hyperplanes
•  A strong high-bias assumption is linear separability:

–  in 2 dimensions, can separate classes by a line
–  in higher dimensions, need hyperplanes

Hyperplanes

•  A hyperplane is line/plane in a high
dimensional space

What defines a hyperplane?
What defines a line?

Hyperplanes
A hyperplane in an n-dimensional space is
defined by n+1 values

€

0 = w1 f1 + w2 f2 + ...+ wn fn + wn+1

e.g. a line

or a plane

€

0 = w1 f1 + w2 f2 + w3

€

0 = w1 f1 + w2 f2 + w3 f3 + w4

f(x) = ax+b

f(x,y) = ax+by + c

3

NB as a linear classifier
To classify:

€

argmaxC P(C | f1, f2,..., fn)

Another way to view this (for 2 classes):

€

d(f1, f2,..., fn) =
P(c1 | f1, f2,..., fn)
P(c2 | f1, f2,..., fn)

Given d how would we classify?

NB as a linear classifier

To classify:

€

classify(f1, f2,..., fn) =
c1

c2

if d >1
if d <1

 €

d(f1, f2,..., fn) =
P(c1 | f1, f2,..., fn)
P(c2 | f1, f2,..., fn)

€

classify(f1, f2,..., fn) =
c1

c2

if log d > 0
if log d < 0

We can take the log:

NB as a linear classifier

€

logd(f1, f2,..., fn) = log P(c1 | f1, f2,..., fn)
P(c2 | f1, f2,..., fn)

€

= log P(f1 | c1)P(f2 | c1)...P(fn | c1)p(c1)
P(f1 | c2)P(f2 | c2)...P(fn | c2)p(c2)

€

= logP(c1) − logP(c2) + logP(f i | c1) − logP(f i | c2)
i=1

n

∑

NB as a linear classifier

€

= logP(c1) − logP(c2) + logP(f i | c1) − logP(f i | c2)
i=1

n

∑

€

= logP(c1) − logP(c2) + fi(logP(f i | c1) − logP(f i | c2))
i=1

n

∑

binary
features

weight for that
dimension

€

0 = w1 f1 + w2 f2 + ...+ wnxn + wn+1

wn+1

4

Lots of linear classifiers
•  Many common text classifiers are linear classifiers

– Naïve Bayes
– Perceptron
– Rocchio
– Logistic regression
– Support vector machines (with linear kernel)
– Linear regression

•  Despite this similarity, noticeable performance difference

How might algorithms differ?

Which Hyperplane?

lots of possible solutions

Which Hyperplane?

lots of possible solutions

Which examples are important?

5

Which examples are important? Which examples are important?

Dealing with noise

linearly separable?

A nonlinear problem

•  A linear
classifier like
Naïve Bayes
does badly on
this task

•  k-NN will do
very well
(assuming
enough training
data)

20

6

21

Linear classifiers: Which Hyperplane?

•  Lots of possible solutions for a,b,c

•  Support Vector Machine (SVM) finds
an optimal solution
– Maximizes the distance between

the hyperplane and the “difficult
points” close to decision boundary

This line
represents the

decision
boundary:

ax + by - c = 0

22

Another intuition
•  Think of it as trying to place a wide separator

between the points.
•  Will constrain the possible options

Support Vector Machine (SVM)
Support vectors

Maximize
margin

•  SVMs maximize the margin
around the separating hyperplane

•  aka large margin classifiers
•  specified by a subset of training

samples, the support vectors
•  Posed as a quadratic programming

problem
•  Seen by many as the most

successful current text
classification method*

*but other discriminative methods
often perform very similarly

Margin maximization

7

Margin maximization Measuring the margin

The support vectors define the hyperplane
and the margin

Measuring the margin

How do we classify points given the hyperplane?

Measuring the margin

wT

b

f(xi) = sign(wTxi + b)

8

Measuring the margin

ρ

How can we calculate margin?

wT

b

Measuring the margin

Minimum of the distance from the hyperplane
to any point(s) (specifically the support vectors)

ρ

wT

b

Measuring the margin

ρ

r

x

x′

Want to calculate r
x’ – x is perpendicular to hyperplane

w/|w| is the unit vector in direction of w

x’ = x – rw/|w|

x’ satisfies wTx’+b = 0 because it’s on wT

So wT(x –rw/|w|) + b = 0

wTx –wTrw/|w| + b = 0
wTx –wTrw|w|/|w||w| + b = 0

wTx –wTrw|w|/wTw + b = 0 |w
| =

 sq
rt(

w
T w)

wTx –r|w| + b = 0

wT

b

Linear SVM Mathematically
The linearly separable case

•  Assume that all data is at least distance 1 from the hyperplane, then the
following two constraints follow for a training set {(xi ,yi)}

•  For support vectors, the inequality becomes an equality
•  Then, since each example’s distance from the hyperplane is

•  The margin is:

wTxi + b ≥ 1 if yi = 1
wTxi + b ≤ -1 if yi = -1

9

Linear SVMs Mathematically
(cont.)

•  Then we can formulate the quadratic optimization problem:

•  A better formulation (min ||w|| = max 1/ ||w||):

Find w and b such that
 is maximized; and for all {(xi , yi)}
wTxi + b ≥ 1 if yi=1; wTxi + b ≤ -1 if yi = -1

Find w and b such that
Φ(w) = wTw is minimized;
and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

Solving the Optimization
Problem

•  This is a quadratic function subject to linear
constraints

•  Quadratic optimization problems are a well-
known

•  Many ways exist for solving these

Find w and b such that
Φ(w) = wTw is minimized;

and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

An LP example

100 200 300

100

200

300

400

400

An LP example

100 200 300

100

200

300

400

400

Where is the feasibility region?

10

An LP example

100 200 300

100

200

300

400

400

An LP example

100 200 300

100

200

300

400

400

c = 2100

c = 1800

c = 1500

c = 1200

c = 900

c = 600

An LP example

100 200 300

100

200

300

400

400

c = 2100

c = 1800

c = 1500

c = 1200

c = 900

c = 600

to maximize, move as far in this
direction as the constraints allow

Soft Margin Classification

What about this problem?

11

Soft Margin Classification

Like to learn something like this, but
our constraints won’t allow it

Soft Margin Classification

Slack variables: allow it to make some
mistakes, but penalize it

Soft Margin Classification
Mathematically

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}

yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and ξi ≥ 0 for all i

Old:

With slack variables:

- allows us to make a mistake, but penalizes it
- C trades off noisiness vs. error

Linear SVMs: Summary

•  Classifier is a separating hyperplane
–  large margin classifier: learn a hyperplane that

maximally separates the examples

•  Most “important” training points are support
vectors; they define the hyperplane

•  Quadratic optimization algorithm

12

Non-linear SVMs
•  Datasets that are linearly separable (with some noise) work out

great:

•  But what are we going to do if the dataset is just too hard?

•  How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

46

Non-linear SVMs: Feature spaces

•  General idea: map original feature space to higher-
dimensional feature space where the training set is
separable:

Φ: x →
φ(x)

The “Kernel Trick”

•  The linear classifier relies on an inner product
between vectors K(xi,xj)=xi

Txj

•  If every datapoint is mapped into high-dimensional
space via some transformation Φ: x → φ(x), the
inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

•  A kernel function is some function that corresponds
to an inner product in some expanded feature space.

Kernels
•  Why use kernels?

–  Make non-separable problem separable.
–  Map data into better representational space

•  Common kernels
–  Linear
–  Polynomial K(x,z) = (1+xTz)d

•  Gives feature conjunctions

–  Radial basis function (infinite dimensional space)

13

Demo

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

SVM implementations

•  SVMLight (C)
•  SVMLib (Java)

Switching gears: weighted examples

•  Are all examples equally important?

Weak classifiers

•  Sometimes, it can be intractable (or very
expensive) to train a full classifier

•  However, we can get some information using
simple classifiers

•  A weak classifier is any classifier that gets
more than half of the examples right
–  not that hard to do
–  a weak classifier does better than random

•  Ideas?

14

Decision stumps

•  A decision stump is a common weak classifier
•  Decision stump: 1 level decision tree:

featurei

class 1 class 2

Ensemble methods

•  If one classifier is good, why not 10 classifiers,
or 100?

•  Ensemble methods combine different
classifiers in a reasonable way to get at a better
solution
–  similar to how we combined heuristic functions

•  Boosting is one approach that combines
multiple weak classifiers

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Start with equal weighted examples

Learn a weak classifier

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

It will do well on some of our training
examples and not so well on others

15

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

We’d like to reweight the examples and learn
another weak classifier. Ideas?

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Downweight ones that we’re doing well, and
upweight those that we’re having problems with

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Learn a new classifier based on the new set of
weighted examples

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Learn a new classifier based on the new set of
weighted examples

Weak2

16

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Reweight again:

Weak2

Boosting
•  Continue this for some number of “rounds”

–  at each round we learn a new weak classifier
–  and then reweight the examples again

•  Our final classifier is a weighted combination of these
weak classifiers

•  Adaboost is one common version of boosting
–  specifies how to reweight and how to combine learned

classifiers
–  nice theoretical guarantees
–  tends not to have problems with overfitting

•  http://cseweb.ucsd.edu/classes/fa01/cse291/AdaBoost.pdf

Classification: concluding thoughts

•  Lots of classifiers out there
– SVMs work very well on broad range of settings

•  Many challenges still:
–  coming up with good features
–  preprocessing
–  picking the right kernel
–  learning hyper parameters (e.g. C for SVMs)

•  Still a ways from computers “learning” in the
traditional sense

