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http://kottke.org/10/10/robot-beanbag-hand-can-grip-anything 

David Kauchak, CS151, Fall 2010 

Machine Learning 

Math 
•  Machine learning often involves a lot of math 

–  some aspects of AI also involve some familiarity 

•  Don’t let this be daunting 
– Many of you have taken more math than me 
– Gets better over time 
– Often, just have to not be intimidated 

Learning 

environment 
agent 

? 

sensors 

actuators 

As an agent interacts with the world, it should 
learn about it’s environment 
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Last time 

•  Two classifiers 
–  k-nearest neighbor 
–  decision tree 
–  good and bad? 

•  Bias vs. variance 
–  a measure of the model 
–  where do k-nn and decision trees fit on the bias/variance 

spectrum?  

Separation by Hyperplanes 
•  A strong high-bias assumption is linear separability: 

–  in 2 dimensions, can separate classes by a line 
–  in higher dimensions, need hyperplanes 

Hyperplanes 

•  A hyperplane is line/plane in a high 
dimensional space 

What defines a hyperplane? 
What defines a line? 

Hyperplanes 
A hyperplane in an n-dimensional space is 
defined by n+1 values 

€ 

0 = w1 f1 + w2 f2 + ...+ wn fn + wn+1

e.g. a line 

or a plane 

€ 

0 = w1 f1 + w2 f2 + w3

€ 

0 = w1 f1 + w2 f2 + w3 f3 + w4

f(x) = ax+b 

f(x,y) = ax+by + c 



3 

NB as a linear classifier 
To classify: 

€ 

argmaxC P(C | f1, f2,..., fn )

Another way to view this (for 2 classes): 

€ 

d( f1, f2,..., fn ) =
P(c1 | f1, f2,..., fn )
P(c2 | f1, f2,..., fn )

Given d how would we classify? 

NB as a linear classifier 

To classify: 

€ 

classify( f1, f2,..., fn ) =
c1

c2

if d >1
if d <1

 
 
 

 
 
 € 

d( f1, f2,..., fn ) =
P(c1 | f1, f2,..., fn )
P(c2 | f1, f2,..., fn )

€ 

classify( f1, f2,..., fn ) =
c1

c2

if log d > 0
if log d < 0

 
 
 

 
 
 

We can take the log: 

NB as a linear classifier 

€ 

logd( f1, f2,..., fn ) = log P(c1 | f1, f2,..., fn )
P(c2 | f1, f2,..., fn )

€ 

= log P( f1 | c1)P( f2 | c1)...P( fn | c1)p(c1)
P( f1 | c2)P( f2 | c2)...P( fn | c2)p(c2)

€ 

= logP(c1) − logP(c2) + logP( f i | c1) − logP( f i | c2)
i=1

n

∑

NB as a linear classifier 

€ 

= logP(c1) − logP(c2) + logP( f i | c1) − logP( f i | c2)
i=1

n

∑

€ 

= logP(c1) − logP(c2) + fi(logP( f i | c1) − logP( f i | c2))
i=1

n

∑

binary  
features 

weight for that 
dimension 

€ 

0 = w1 f1 + w2 f2 + ...+ wnxn + wn+1

wn+1 
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Lots of linear classifiers 
•  Many common text classifiers are linear classifiers 

– Naïve Bayes 
– Perceptron 
– Rocchio 
– Logistic regression 
– Support vector machines (with linear kernel) 
– Linear regression 

•  Despite this similarity, noticeable performance difference 

How might algorithms differ? 

Which Hyperplane? 

lots of possible solutions 

Which Hyperplane? 

lots of possible solutions 

Which examples are important? 
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Which examples are important? Which examples are important? 

Dealing with noise 

linearly separable? 

A nonlinear problem 

•  A linear 
classifier like 
Naïve Bayes 
does badly on 
this task 

•  k-NN will do 
very well 
(assuming 
enough training 
data) 

20 
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Linear classifiers: Which Hyperplane? 

•  Lots of possible solutions for a,b,c 

•  Support Vector Machine (SVM) finds 
an optimal solution 
– Maximizes the distance between 

the hyperplane and the “difficult 
points” close to decision boundary 

This line 
represents the 

decision 
boundary: 

ax + by - c = 0 

22 

Another intuition 
•  Think of it as trying to place a wide separator 

between the points. 
•  Will constrain the possible options 

Support Vector Machine (SVM) 
Support vectors 

Maximize 
margin 

•  SVMs maximize the margin 
around the separating hyperplane 

•  aka large margin classifiers 
•  specified by a subset of training 

samples, the support vectors 
•  Posed as a quadratic programming 

problem 
•  Seen by many as the most 

successful current text 
classification method*  

*but other discriminative methods 
often perform very similarly 

Margin maximization 
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Margin maximization Measuring the margin 

The support vectors define the hyperplane 
and the margin 

Measuring the margin 

How do we classify points given the hyperplane? 

Measuring the margin 

wT 

b 

f(xi) =  sign(wTxi + b) 
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Measuring the margin 

ρ 

How can we calculate margin? 

wT 

b 

Measuring the margin 

Minimum of the distance from the hyperplane 
to any point(s) (specifically the support vectors) 

ρ 

wT 

b 

Measuring the margin 

ρ 

r 

x 

x′ 

Want to calculate r 
x’ – x is perpendicular to hyperplane  

w/|w| is the unit vector in direction of w 

x’ = x – rw/|w| 

x’ satisfies wTx’+b = 0 because it’s on wT 

So wT(x –rw/|w|) + b = 0 

wTx –wTrw/|w| + b = 0 
wTx –wTrw|w|/|w||w| + b = 0 

wTx –wTrw|w|/wTw + b = 0 |w
| =

 sq
rt(

w
T w) 

wTx –r|w| + b = 0 

wT 

b 

Linear SVM Mathematically 
The linearly separable case 

•  Assume that all data is at least distance 1 from the hyperplane, then the 
following two constraints follow for a training set {(xi ,yi)}  

•  For support vectors, the inequality becomes an equality 
•  Then, since each example’s distance from the hyperplane is 

•  The margin is: 

wTxi + b ≥ 1    if yi = 1 
wTxi + b ≤ -1   if yi = -1 
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Linear SVMs Mathematically 
(cont.) 

•  Then we can formulate the quadratic optimization problem:  

•  A better formulation (min ||w|| = max 1/ ||w|| ):  

Find w and b such that 
 is maximized; and for all {(xi , yi)} 
wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1 

Find w and b such that 
Φ(w) = wTw  is minimized;  
and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1 

Solving the Optimization 
Problem 

•  This is a quadratic function subject to linear 
constraints 

•  Quadratic optimization problems are a well-
known 

•  Many ways exist for solving these 

Find w and b such that 
Φ(w) = wTw  is minimized;  

and for all {(xi ,yi)}:  yi (wTxi + b) ≥ 1 

An LP example 

100 200 300 

100 

200 

300 

400 

400 

An LP example 

100 200 300 

100 

200 

300 

400 

400 

Where is the feasibility region? 
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An LP example 

100 200 300 

100 

200 

300 

400 

400 

An LP example 

100 200 300 

100 

200 

300 

400 

400 

c = 2100 

c = 1800 

c = 1500 

c = 1200 

c = 900 

c = 600 

An LP example 

100 200 300 

100 

200 

300 

400 

400 

c = 2100 

c = 1800 

c = 1500 

c = 1200 

c = 900 

c = 600 

to maximize, move as far in this 
direction as the constraints allow  

Soft Margin Classification   

What about this problem? 
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Soft Margin Classification   

Like to learn something like this, but 
our constraints won’t allow it  

Soft Margin Classification   

Slack variables: allow it to make some 
mistakes, but penalize it 

Soft Margin Classification 
Mathematically 

Find w and b such that 
Φ(w) =½ wTw  is minimized and for all {(xi ,yi)} 

yi (wTxi + b) ≥ 1 

Find w and b such that 
Φ(w) =½ wTw + CΣξi     is minimized and for all {(xi ,yi)} 
yi (wTxi + b) ≥ 1- ξi     and    ξi ≥ 0 for all i 

Old: 

With slack variables: 

- allows us to make a mistake, but penalizes it 
- C trades off noisiness vs. error 

Linear SVMs:  Summary 

•  Classifier is a separating hyperplane 
–  large margin classifier: learn a hyperplane that 

maximally separates the examples 

•  Most “important” training points are support 
vectors; they define the hyperplane 

•  Quadratic optimization algorithm 
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Non-linear SVMs 
•  Datasets that are linearly separable (with some noise) work out 

great: 

•  But what are we going to do if the dataset is just too hard?  

•  How about … mapping data to a higher-dimensional space: 

0 

x2 

x 

0 x 

0 x 

46 

Non-linear SVMs:  Feature spaces 

•  General idea:   map original feature space to higher-
dimensional feature space where the training set is 
separable: 

Φ:  x → 
φ(x) 

The “Kernel Trick” 

•  The linear classifier relies on an inner product 
between vectors K(xi,xj)=xi

Txj 

•  If every datapoint is mapped into high-dimensional 
space via some transformation Φ:  x → φ(x), the 
inner product becomes: 

K(xi,xj)= φ(xi) 
Tφ(xj) 

•  A kernel function is some function that corresponds 
to an inner product in some expanded feature space. 

Kernels 
•  Why use kernels? 

–  Make non-separable problem separable. 
–  Map data into better representational space 

•  Common kernels 
–  Linear 
–  Polynomial K(x,z) = (1+xTz)d 

•  Gives feature conjunctions 

–  Radial basis function (infinite dimensional space) 



13 

Demo 

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml 

SVM implementations 

•  SVMLight (C) 
•  SVMLib (Java) 

Switching gears: weighted examples 

•  Are all examples equally important? 

Weak classifiers 

•  Sometimes, it can be intractable (or very 
expensive) to train a full classifier 

•  However, we can get some information using 
simple classifiers 

•  A weak classifier is any classifier that gets 
more than half of the examples right 
–  not that hard to do 
–  a weak classifier does better than random 

•  Ideas? 
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Decision stumps 

•  A decision stump is a common weak classifier 
•  Decision stump: 1 level decision tree: 

featurei 

class 1 class 2 

Ensemble methods 

•  If one classifier is good, why not 10 classifiers, 
or 100? 

•  Ensemble methods combine different 
classifiers in a reasonable way to get at a better 
solution 
–  similar to how we combined heuristic functions 

•  Boosting is one approach that combines 
multiple weak classifiers 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Start with equal weighted examples 

Learn a weak classifier 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

It will do well on some of our training 
examples and not so well on others 
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Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

We’d like to reweight the examples and learn 
another weak classifier.  Ideas? 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Downweight ones that we’re doing well, and 
upweight those that we’re having problems with 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Learn a new classifier based on the new set of 
weighted examples 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Learn a new classifier based on the new set of 
weighted examples 

Weak2 
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Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Reweight again: 

Weak2 

Boosting 
•  Continue this for some number of “rounds” 

–  at each round we learn a new weak classifier 
–  and then reweight the examples again 

•  Our final classifier is a weighted combination of these 
weak classifiers 

•  Adaboost is one common version of boosting 
–  specifies how to reweight and how to combine learned 

classifiers 
–  nice theoretical guarantees 
–  tends not to have problems with overfitting 

•  http://cseweb.ucsd.edu/classes/fa01/cse291/AdaBoost.pdf 

Classification: concluding thoughts 

•  Lots of classifiers out there 
– SVMs work very well on broad range of settings 

•  Many challenges still: 
–  coming up with good features 
–  preprocessing 
–  picking the right kernel 
–  learning hyper parameters (e.g. C for SVMs) 

•  Still a ways from computers “learning” in the 
traditional sense 


