Machine Learning

David Kauchak, CS151, Fall 2010

Admin

- CS colloquium tomorrow
- Literature review due Friday

Project ideas

- Improved mancala player
 - examine improvements from other game playing components
 - · end-game table
 - transposition table - learned weights for evaluation function
- · Examine the performance of other search algorithms for an
- application (for example theta*)
- · Play with games with different characteristics
 - games with chance
 - unobservability (blind tic-tac-toe, stratego)
 - games with betting
- Compare local search methods on an application
- Compare CSP heuristics

Project ideas

- Bayes nets •
 - Variable elimination algorithm
 - compare vs. enumeration
 compare different variable ordering heuristics

 - implement MCMC lots of applications here
- SPAM identification/detection
- Improved sentiment classification
- Compare document classification techniques (NB vs. ٠ multinomial NB)
- Play with some machine learning approach(es) - <u>http://archive.ics.uci.edu/ml/</u> (lots of data sets)

Project ideas

• HMMs

- Applications
 - HMM part of speech tagger
 Phone texting prediction (e.g. T9) other models besides HMM might also be
- Interesting HMM smoothing for tracking movement
- HMM smoothing for
 HMM prediction
- predicting movement in video
 - stock market prediction
- sports prediction
- Clustering
 - compare clustering approaches
 - see how clustering does on a particular dataset
 - state space search hierarchical clustering

The plan

- We looked in a lot of detail at HMMs
- For the next few classes, going to look at machine learning techniques
- More an emphasis on breadth
- You'll get to play with some of the techniques in the homeworks (and maybe your final projects)

The mind-reading game

How good are you at guessing random numbers?

Repeat 100 times: Computer guesses whether you'll type 0/1 You type 0 or 1

http://seed.ucsd.edu/~mindreader/ [written by Y. Freund and R. Schapire]

- · We'll focus on supervised learning this class and next
- · Some unsupervised
- Many others
 - semi-supervised learning: some labeled data and some unlabeled data
 active learning: unlabeled data, but we can pick some examples to be labeled
 - reinforcement learning: maximize a *cumulative* reward. Learn to drive a car, reward = not crashing
- and variations
 - online vs. offline learning: do we have access to all of the data or do we have to learn as we go
 - classification vs. regression: are we predicting between a finite set or are we predicting a score/value

Boost probability of success

Analogy: suppose a (biased) coin has Pr(heads) = 0.70

Flip it 11 times and return the majority vote: Pr(heads) = 0.92

Therefore: to classify x, find its \underline{k} nearest neighbors (in the training set) and return their majority vote

Large deviation theory: the foundation of machine learning...

k-Nearest Neighbor (k-NN)

- To classify an example *d*:
 - Find k nearest neighbors of d
 - Choose as the class the majority class within the k nearest neightbors
- Can get rough approximations of probability of belonging to a class as fraction of *k*
- · Does not explicitly compute boundary or model
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning

k Nearest Neighbor

- What value of k should we use?
 - Using only the closest example (1NN) to determine the class is subject to errors due to:
 - A single atypical example
 - Noise
 - Pick k too large and you end up with looking at neighbors that are not that close
 - Value of k is typically odd to avoid ties; 3 and 5 are most common.

	k-N
k	error
1	6.0
3	5.9
5	6.0
7	6.0
9	5.8

k-NN: The good and the bad

- Good
 - No training is necessary
 - No feature selection necessary
 - Scales well with large number of classes
 Don't need to train *n* classifiers for *n* classes
- Bad
 - Classes can influence each other
 - · Small changes to one class can have ripple effect
 - Scores can be hard to convert to probabilities
 - Can be more expensive at test time
 - "Model" is all of your training examples which can be large

Bias/Variance

- Bias: How well does the model predict the training data?
 - high bias the model doesn't do a good job of predicting the training data (high training set error)
 The model predictions are biased by the model
- Variance: How sensitive to the training data is the learned model?
 - high variance changing the training data can drastically change the learned model

Bias/Variance

- Another way to think about it is model complexity
- Simple models
 - may not model data well
 - high bias
- Complicated models
 - may overfit to the training data
 - high variance
- Why do we care about bias/variance?

k-NN vs. Naive Bayes

How do k-NN and NB sit on the variance/bias plane?

- Bias: How well does the model predict the training data?
 high bias the model doesn't do a good job of predicting the training data (high training set error)
 - The model predictions are biased by the model
- Variance: How sensitive to the training data is the learned model? - high variance - changing the training data can drastically change the learned model

k-NN vs. Naive Bayes

How do k-NN and NB sit on the variance/bias plane?

- k-NN has high variance and low bias.
 - more complicated model
 - can model any boundary
- but very dependent on the training data
- NB has low variance and high bias.
 - Decision surface has to be linear
 - Cannot model all data
 - but, less variation based on the training data

Playing tennis

- You want to decide whether or not to play tennis today
 - Outlook: Sunny, Overcast, Rain
 - Humidity: High, normal
 - Wind: Strong, weak
- What might be a reasonable decision?

· there are no attributes left

Decision Tree Learning

- · Start at the top and work our way down
 - Examine all of the features to see which feature best separates the data
 - Split the data into subsets based on the feature test
 - Test the *remaining* features to see which best separates the data in each subset
 - Repeat this process in all branches until:
 - all examples in a subset are of the same type
 - · there are no examples left
 - · there are no attributes left

Ideas?

KL-Divergence

• Given two probability distributions P and Q

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

When is this large? small?

KL-Divergence

• Given two probability distributions P and Q

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

When
$$P = Q$$
, $D_{KL}(P||Q) = 0$

KL-Divergence

• Given two probability distributions P and Q

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

 $\begin{array}{ll} P(1) = 0.999 & Q(1) = 0.001 \\ P(2) = 0.001 & P(2) = 0.999 \end{array}$

 $D_{KL}(P||Q) = 6.89$

KL-divergence is a measure of the distance between two probability distributions (though it's not a distance metric!

Information Gain $D_{KL}(P(class | f) || P(class)) = \sum_{c \in class} P(c | f) \log \frac{P(c | f)}{P(c)}$ • What is the distance from the probability of a class (i.e. the prior) and the probability of that class conditioned on *f*? • What information do we gain about the class decision, given the feature *f*?

• Use information gain to decide the most informative feature to split on

Pruning

- Just like in our game tree pruning (alpha-beta) we can also prune a decision tree
- Lots of ways to do this
- One common way:
 - Measure accuracy on a hold-out set (i.e. not used for training)
 - · Stop splitting when when accuracy decreases
 - Prune tree from the bottom up, replacing split nodes with majority label, while accuracy doesn't decrease
- Other ways look at complexity of the model with respect to characteristics of the training data

Decision trees

- Good
 - Very human friendly
 - easy to understand
 - people can modify
 - fairly quick to train
- Bad
 - overfitting/pruning can be tricky
 - greedy approach: if you make a split you're stuck with it
 - performance is ok, but can do better

A good review

- Top Gear reviews Ford Fiesta

 http://www.youtube.com/watch?v=6Zy78tFPQwQ
- Different sections highlighting different aspects
- In each case, cites specific examples of good and bad things
- Keeps the end-user of the review in mind (in our case, pretend it's either the authors of the paper or someone on a conference committee)