

Admin

- Written 6 is out
- > Final project literature review, due this Friday
- Final project
 - Project proposal due 11/5
 - If you don't have a partner, send me an e-mail ASAP along with a list of a few topics you might be interested in (or if you don't care)
- > Last assignment (HMM) also out
- NB classifier
 - How many people did extra credit?
 - Best performance on data sets/%improvement
 - Interesting/successful features?

F1	can view	all possible	sequences	as a graph:		
	Quiz No Quiz	Quiz	Quiz No Quiz	Quiz		
	Q ₀	Q	Q ₂	Q ₃		
The	"trellis"	describes a	ll the possi	ble path		
Do	es the tr	ellis help ex	plain the fi	ltering equat	ion?	
Fi	ltering:	$P(Q_t \mid F_{1:t}) =$	$\alpha P(F_t Q_t)$	$\sum_{q_{t-1}} P(Q_t \mid q_{t-1})$	$P(q_{t-1} F_{1:t-1})$)

Filtering	g revisit	ed	
We can view	all possible	sequences	as a graph:
Quiz	Quiz	Quiz	Quiz
No Quiz	ANO Quiz	No Quiz	A No Quiz
Q ₀	Qı	Q ₂	Q ₃
Filtering: P	$(q_2 \mid F_{1:2}) = \alpha$	$P(f_2 \mid q_2) \sum_{q}$	$\sum_{n} P(q_1 \mid q_1) P(q_1 \mid F_1)$
- There are two on day I. - We don't kno	ways we could w which of thes	get to having e happened, s	a quiz on day 2, either quiz or no quiz o we sum over them, multiplying by the
probability of th - We then mult observed data.	em happening! ply times the pi	robability of a	quiz on the second day give our
•			

Quiz taking

- What is the probability of a quiz today given no folder today or last class?
 - P(Q₂|NF, NF) = [0.165, 0.835] Quiz No Quiz
- On the next class, I bring in the dreaded folder. What now is the probability that we had a quiz that previous class?
 - ▶ P(Q₂|NF, NF, F) = ?

Forward-Backward algorithm

Μ	ost lik	ely exp	planatio	n	
We	can view	all possibl	e sequences a	as a graph:	
	Quiz	Quiz	Quiz	Quiz	
	No Quiz	No Quiz	No Quiz	No Quiz	
	Q ₀	Qı	Q ₂	Q ₃	
C w a	Consider a ve just ne ssumption	any day. A ed to cons n)	s with filtering sider the prev	g, for each option, rious day (Markov	

Most lil	cely exp	lanatio	n	
We can view	all possible	e sequences	as a graph	:
Quiz	Quiz	Quiz	Quiz]
No Quiz	No Quiz	A No Quiz	No Quiz]
Q ₀	Qı	Q ₂	Q ₃	
Filtering: H	$P(Q_t \mid F_{1:t}) = 0$	$\alpha P(F_t \mid Q_t) \sum_{q_t}$	$\sum_{t=1}^{t} P(Q_t \mid q_{t-1})$	$P(q_{t-1} F_{1:t-1})$
		Filter	ing summed	over all
		possi	ble previous	states
		We v shou	vant the <i>most</i> d we do?	t likely. What

Cincilan ta filtaning		
 Similar to intering Stant at the baginning 	a and move to and	
 Start at the beginnin Calculate the "mess 	ig and move to end	avious message
 Note that this is a s 	et of probabilities, one for	each state value
If you want the actu	al choice, need to stor	e backpointers
Called the Viterbi a	orithm	
	0	
$\max_{Q_{i,j}} P(Q_{i,j} \mid F_{i,j}) = \alpha P(F_{i,j})$	$(Q_t) \max_{q_t} P(Q_t q_t)$	$P(Q_{1:t-1} F_{1:t-1})$
$\max_{Q_{1:t}} P(Q_{1:t} \mid F_{1:t}) = \alpha P(F_{1:t})$	$(Q_t) \max_{q_{t-1}} P(Q_t q_{t-1})$	$(P_{1:t-1}) \max_{Q_{1:t-1}} P(Q_{1:t-1} F_{1:t-1})$

 $= \alpha \, 0.7 \, 0.3715 = 0.260$

- Nouns: people, animals, concepts, things
 Verbs: express action in the sentence
- Adjectives: describe properties of nouns
- Input: The lead paint is unsafe
- Output: The/DET lead/N paint/N is/V unsafe/ADJ
- Observed words
- States
- parts of speech
- HMM task
 most likely sequence

Simultaneous Localization and Mapping Landmark SLAM (E. Neber, Victoria Park) CAD Map (S. Thrun, So far Ende Museury) Extrema Museury Map

Financial ForecastingImage: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2"Image: Colspan="2">Image: Colspan="2"Image: Colspan="2">Image: Colspan="2"Image: Colspan="2"</

More complicated Markov models

- We can redefine what the state is
- \blacktriangleright Say we would like to have $P(Q_t \mid Q_{t \text{-} 1}, Q_{t \text{-} 2})$ (that is a second-order Markov model)
 -) Rather than just having the state be $Q_{t^{*}}$ we let the state be $Q_{t} \times Q_{t^{*}l}$
 - \triangleright Then, our CPT would be $P(Q_t \times Q_{t\cdot l} \mid Q_{t\cdot l} \times Q_{t\cdot 2})$ which you can use as just $P(Q_t \mid Q_{t\cdot l} \times Q_{t\cdot 2})$

More complicated Markov Models

- Often, we will have more than just one feature that is observed
- Quiz
- whether I had a quiz in my other class
- whether I look stressed or not
- the week in the semester
- if we just had a midterm (if we have an upcoming midterm)
- The CPD then becomes
- $P(\text{feature}_1, \text{feature}_2, \dots, \text{feature}_n | Qt)$
- An HMM, assumes a CPD with all possible feature combination
- A dynamic bayes net, can simplify this assumption
- > in our lab, we assume features are independent given the state
- Þ