

Sampling from Bayes Nets

Paper reviews

- · Should be useful feedback for the authors
- · A critique of the paper
- No paper is perfect!
 if you don't understand it, state it
- Technically sound vs. convinced
- Give explicit examples, the more the better
- cite sections, paragraphs, tables, figures, equations, etc.
- Make different sections clear
 many conference reviews will have a similar format

Asking questions about distributions

- We want to be able to ask questions about these probability distributions
- Given *n* variables, a query splits the variables into three sets:
 - query variable(s)
 - known/evidence variables
 - unknown/hidden variables
- P(query | evidence)
 - if we had no hidden variables, we could just multiply all the values in the different CPTs
 - to answer this, we need to sum over the hiden variables!

Bayesian Network Inference

- But...inference is still tractable in some cases.
- · Special case: trees (each node has one parent)
- · VE is LINEAR in this case

- Recall when we wanted to find out the underlying distribution (of say a coin or die) we used sampling to estimate it
- · Basic Idea:
 - Draw N samples from the distribution
 - Compute an approximate probability P
 - Eventually, for large samples sizes this converges to the true probability P

Calculating probabilities

• If we do this a number of times, then we can approximate answers to queries

[C, S, R, W] [T, T, F, T] [F, F, F, F] [F, F, F, T] [F, F, T, T] [T, T, F, T] [T, T, F, T] [T, T, F, T] [T, T, F, F] [T, T, F, F]

What is the probability of rain?

Calculating probabilities

• If we do this a number of times, then we can approximate answers to queries

Rejection sampling
 What if we want to know the probability conditioned on some evidence? – p(rain wet_grass)
[C, S, R, W] [T, T, F, T] [F, F, F, F] [F, T, F, T] [T, F, F, F] [T, T, F, T] [T, T, F, T] [T, F, F, F] [T, T, F, F] [T, T, F, F]

Likelihood weighting

- The problem with rejection sampling is that we may have to generate a lot of samples
 - low probability/rare events
 - large networks
- Likelihood weighting
 - rather than randomly sampling over all of the variables, only randomly pick values for the query variables and hidden variables
 - for those, the evidence variables weight the examples based on the likelihood of obtaining their fixed value

Problem with likelihood weighting?

Problems with likelihood weighting

- As number of variables increased, weights will be very small
 - similar to rejection sampling, will only be a small number of higher probability ones that will actually effect the outcome
- If evidence variables are late in the ordering (BN), simulations will be not be influenced by evidence and so samples will not look much like reality

MCMC Sampling

- Start in some valid configuration of the variables
- Repeat the following steps:
 - pick a non-evidence variable
 - randomly sample given its markov blanket
 - · count this new state as a sample
- If the process visits 20 states where Rain is true and 60 states where Rain is false,
 - Then the answer to the query is <20/80, 60/80> = <0.25, 0.75>

Document classification

- Naïve Bayes classifier works surprisingly well for its simplicity
- We can do better!

(Big Boy models)

"Generating" a document

- The *generative story* of a model describes how the model would generate a sample (document)
- It can help understand the independences and how the model works
- As before, we can generate a random sample from the BN

Bag of words representation

- Notice that there is no ordering in the model
 "I ate a banana" is viewed as the same as "ate I banana a"
- Called the "bag of words" representation

NB model

- A word either occurs or doesn't occur

 no frequency information
- Word occurrences are independent, given the class

when we sample, the only thing we condition on is the class

Multinomial model

- Called a multinomial model because the word frequencies drawn for a document of length m, follow a multinomial distribution
 - sampling with replacement from a fixed distribution
- Word occurrences are still independent!
 doesn't matter what other words we've drawn
- Although technically the position is specified, doesn't really give us positional information
- · Still a naïve Bayes model!

Plate notation

- It can be tedious to write out all of the children in a BN
- When they're all the same type, we can use "plate" notation
 - A plate represents a set of variables
 - We specify repetition by putting a number in the lower right corner
 - edges crossing plate boundaries are considered to be multiple edges

DCM

- Key problem with NB multinomial: words tend to be "bursty"
 - if a word occurs once, it's likely to occur again
 particularly content words, e.g. Bush
- DCM model allows us to model burstiness by picking multinomials for a given document that have a higher probability of ocurring

For those that like math ©

 $p(\mathbf{x} \mid \alpha) = \int_{\theta} \frac{|\mathbf{x}|!}{\prod_{w=1}^{W} x_{w}!} \left(\prod_{w=1}^{W} \theta_{w}^{x_{w}}\right) \frac{\Gamma\left(\sum_{w=1}^{W} \alpha_{w}\right)}{\prod_{w=1}^{W} \Gamma\left(\alpha_{w}\right)} \prod_{w=1}^{W} \theta_{w}^{\alpha_{w}-1} d\theta$ $= \frac{|\mathbf{x}|!}{\prod_{w=1}^{W} x_{w}!} \frac{\Gamma\left(\sum_{w=1}^{W} \alpha_{w}\right)}{\prod_{w=1}^{W} \Gamma\left(\alpha_{w}\right)} \int_{\theta} \prod_{w=1}^{W} \theta_{w}^{\alpha_{w}+x_{w}-1} d\theta$ $= \frac{|\mathbf{x}|!}{\prod_{w=1}^{W} x_{w}!} \frac{\Gamma\left(\sum_{w=1}^{W} \alpha_{w}\right)}{\prod_{w=1}^{W} \Gamma\left(\alpha_{w}\right)} \prod_{w=1}^{W} \frac{\Gamma\left(x_{w} + \alpha_{w}\right)}{\Gamma\left(\alpha_{w}\right)}$

CM vs. Multinomial				
	Industry	20 Newsgroups		
Multinomial	0.600	0.853		
DCM	0.806	0.890		
L	1	1		

Topic models

- Often a document isn't just about one idea/topic
- Topic models view documents as a blend of "topics"

Midterm

- Open book
- still only 75 min, so don't rely on it too much
- Anything we've talked about in class or read about is fair game
- · Written questions are a good place to start

- Intro to AI
 - what is Al
 - goalschallenges
 - problem areas

Review

Uninformed search

- reasoning through search
- agent paradigm (sensors, actuators, environment, etc.)
- setting up problems as search
- state space (starting state, next state function, goal state)
- actions
- · costs
- problem characteristics
 - · observability
 - determinism
 - known/unknown state space
- techniques
 - BFS
 - DFS
 - · uniform cost search
 - · depth limited search
 - · Iterative deepening

Review

- Uninformed search cont.
 - things to know about search algorithms
 - time
 - space
 - completeness optimality
 - · when to use them
 - graph search vs. tree search

· Informed search

- heuristic function
 - admissibility
 - · combining functions
 - dominance methods
 - greedy best-first search
 A*

Review

- Adversarial search
 - game playing through search
 - ply
 - · depth
 - branching factor
 - state space sizes
 - · optimal play
 - game characteristics
 - observability
 - # of players
 - discrete vs. continuous
 - · real-time vs. turn-based
 - determinism

- · Adversarial search cont
 - minimax algorithm
 - alpha-beta pruning
 - · optimality, etc.
 - evalution functions (heuristics)
 - horizon effect
 - improvements
 - transposition table
 - history/end-game tables
 - dealing with chance/non-determinism
 - · expected minimax
 - dealing with partially observable games

Review

Local search

- when to use/what types of problems
- general formulation
- hill-climbing
- greedy
 - random restarts
 - randomness
- simulated annealing
- local beam search
- · taboo list
- genetic algorithms

Review

- CSPs
 - problem formulation
 - variables
 - domain
 - constraints
 - why CSPs? applications?
 - constraint graph
 - CSP as search
 - backtracking algorithm
 - · forward checking
 - · arc consistency
 - heuristics
 - · most constrained variable · least constrained value
 - ...

Review

- Basic probability
 - why probability (vs. say logic)?
 - vocabulary
 experiment

 - sample • event
 - random variable
 - · probability distribution
 - unconditional/prior probability
 - joint distribution
 - conditional probability
 - Bayes rule

 - estimating probabilities

- · Bayes nets
 - representation
 - dependencies/independencies
 - d-separation
 - Markov blanket
 - reasoning/querying
 - exact:
 - enumeration
 - variable elimination
 - sampling
 - basic
 - variable elimination
 - MCMC

- Bayesian classification
 - problem formulation, argmax, etc.NB model

 - Other models
 - multinomial, DCM, LDA - training, testing, evaluation
 - plate notation