
CS151 - Assignment 5 (last one!)

Due: Wednesday, Nov. 10 at midnight

The purpose of this assignment is to apply what youve learned about Hidden
Markov Models to a real world problem, sketch recognition. In particular,
you will implement the Viterbi algorithm to determine whether or not an
individual pen stroke is a part of a drawing or a letter and you will play
with some different feature possibilities.

Read through this entire handout before getting started.

You may work with a partner on this assignment,. We have three partnered
assignments (including this one). Remember that you may NOT work with
the same parter on all three of these assignments. If you’re looking for a
partner, e-mail me sooner than later.

Background

The motivation behind this assignment comes from a paper in the sketch
recognition/machine learning literature:

C. M. Bishop, M. Svensn, G. E. Hinton. Distinguishing Text from Graph-
ics in On-line Handwritten. 2004. In Proceedings of the International
Workshop on Frontiers in Handwriting Recognition, 42–147.

The paper can be found at
http://research.microsoft.com/en-us/um/people/cmbishop/downloads/Bishop-
IWFHR-04.pdf

The authors of this paper propose to use a Hidden Markov Model to distin-
guish between text and graphics in a sketch. Their model is more complex

1

than ours in that they use the output of a neural network as input to the
observation layer to the HMM. This paper is recommended, though not
required reading.

Our model is a standard Hidden Markov Model, with one node at the hidden
layer (the state node - either drawing or text) and one node at the observed
layer (the stroke node - whose value represents one or more features of the
stroke). Our goal is, given a sequence of values for the stroke nodes (observed
layer) from t = 1, ..., n, to estimate the most likely sequence of state values
for time 1, ..., n. This is a most-likely-explanation problem, as we discussed
in class, and you can solve it using the Viterbi algorithm. Most of the code
to solve this problem is provided for you.

Before diving into the code, let’s look at the probability models that define
the HMM and some problems that arise in these models, specific to our task.
I will give specific number here only as example probabilities. The actual
conditional probability tables are trained based on the labeled training data.

Prior Probability Model
The first model to consider is P (state0), the prior probability over the first
stroke’s state (either text or drawing). Many of the examples we’ve looked
at in class have had a uniform prior where we don’t have any bias towards
either case. In our case, we have a slight bias towards it being a drawing:

p(state0 = drawing) 0.6
p(state0 = text) 0.4

Meaning that there is a 0.6 probability that the first stroke is a drawing
stroke, and a 0.4 probability that the first stroke is a text stroke.

Transition Model
The next model is our transition model, P (statet|statet−1). Because our
state values are simple and discrete, this conditional probability distribution
(CPD) can also be represented as a table:

p(drawing|drawing) 0.8
p(text|drawing) 0.2

p(drawing|text) 0.5
p(text|text) 0.5

2

This means that there is a 0.8 probability that a ‘drawing’ stroke will be fol-
lowed by another ‘drawing’ stroke, and a 0.5 probability that a ‘text’ stroke
will be followed by a ‘text’ stroke.

Evidence Model
Finally, we must consider the evidence model. The evidence model is a bit
more complicated. A “stroke” is not a nice, discrete value like we’ve seen
in the examples so far. In fact, for us, it’s a list of points, represented as
(x, y, time) tuples. For this reason, to reason about strokes in our HMM
we must convert each stroke into one or more features (much like we broke
each document into a set of features in Naive Bayes assignment).

For example, let’s consider only one feature, the stroke’s length. In this
case, the value of stroket is simply the length of the stroke drawn at time t,
i.e., just a number. So, P (stroket|statet) is a distribution over the possible
stroke lengths, given the classification (state) of that stroke.

This representation brings up a few problems:

– Problem 1: Continuous features

Length is not a discrete feature, so our CPD cannot be represented
with a simple table. There are two solutions to this problem, both of
which you may choose to explore. The first solution is to turn length
into a discrete feature by “binning” or “bucketing” it. For example,
we might define all strokes less than 300 units in length to be “short”
and all other strokes to be “long”. Given this discretization, we can
now represent this CPD (the Evidence Model) as a table, for example:

p(short|drawing) 0.2
p(long|drawing) 0.8

p(short|text) 0.6
p(long|text) 0.4

The second solution is to leave the feature as a continuous valued
feature, and fit a Gaussian (or other) distribution over the values of
the features. In this case, rather than using a table, we represent
P (length|state) using a parameterized Gaussian. Either approach is
fine, though I’d suggest starting with the binning approach since this
is more similar to what we have explored so far.

3

– Problem 2: Multiple features

The second problem arises when we decide to use more than one fea-
ture to represent our strokes. If we consider a full table with all values
of all features in combination, the feature space becomes very large
and very complicated. To simplify the feature space, we will make the
feature independence assumption (similar to our Naive Bayes assump-
tion): we assume that given the state, all features are independent
from one another. This assumption allows us to represent the CPD
for multiple features as:

P (stroke|class) = P (f1, f2, ..., fn|class) = P (f1|class) ∗ P (f2|class) ∗
... ∗ P (fn|class)

Where f1, f2, ..., fn are different features, for example, f1 could the the
length feature, f2 could be a drawing speed feature, etc.

Provided Code

I have provided code that implements most of the functionality of this as-
signment. to make your job of playing with different features a little easier
and more fun. Here’s an overview of the provided code. Please see the
comments in the code for more details.

Like last time, I have put the code and data files on the cs NFS at:

/common/cs/cs151/assignment5/

If you’re having trouble grabbing it from here, I’ve also posted a link to the
data on the course web page.

There are only two python files: StrokeHMM.py and guid.py. The only
one you will need to be concerned with and look at is StrokeHMM.py which
contains definitions for the following classes:

• class HMM

Defines the basic functionality of an HMM. Algorithms for learning the
CPDs for discrete and continuous features are already implemented.
You only need to write the label function, which applies the Viterbi

4

algorithm to return the most likely sequence of states, given a sequence
of stroke data (features).

• class strokeLabeler

Defines a stroke labeler class. There are utility functions to load and
save files in an XML format that can be opened in the labeler (see
below). There are also functions to train the HMM provided for you.
You will need to know how to use these functions.

The functions in strokeLabeler that you will need to modify are:

– The constructor: you need to modify self.featureNames, self.contOrDisc,
and self.numFVals as you play with different features

– featurefy: This function converts a stroke into a dictionary of
features. You’ll need to add to it as you play with different fea-
tures

– featureTest: This function is handy for testing and debugging
your feature code and you may want to modify it as you play
with different features

If you want you can modify others. You will also need to add more
functions to compute recognition statistics.

• class Stroke

Defines a stroke class. A stroke is a list of points each with an x, y
and time value. It is in this class that you should add your function(s)
to calculate new feature(s).

Note: After competing the assignment, you should be able use the
labeler in the following way:

execfile("StrokeHMM.py")

x = StrokeLabeler()

x.trainHMMDir("sketchData/")

x.labelFile("somedatafile.xml", "results.txt")

The Data

Also included in the starter folder is a data directory containing labeled
sketches. You don’t need to actually know how the data is stored, but feel

5

free to look at the files if you’re curious (the data is stored as points in
xml format). There are two files in the data directory. sketchData.tar.gz
contains some labeled sketches to be used for training and testing your
HMM. sketchViewer.jar is a program that can be used to view the actual
sketches (again, if you’re curious). You can run it by either typing “open
sketchViewer.jar” or double clicking on it. Inside the program, you can open
up the different sketch files to see what they actually contain.

What to do

Part 1: Implement the Viterbi algorithm

Your first task is to complete the label function in the HMM class. This
function should implement the Viterbi algorithm that we discussed in class
to find the most likely sequence of labels, given a sequence of strokes (rep-
resented as features).

One of the skills I want to work on for this assignment is building on top of
code that you did not write. We have implemented most of the code, so the
two challenges for this first part will be implementing the Viterbi algorithm,
but also understanding what is getting passed around. If the documentation
isn’t clear about what parameters are, etc., then insert some code to print
them out and look at what it there.

You can load an individual training example using the loadLabeledFile

function in the StrokLabeler class. Print it out to see what is stored.
Similarly, you can train an HMM and see what all of the probabilities are
using the trainHMMDir function. Finally, if you look at the labelStrokes

method, this is where your label method will be called.

CAUTION: Python code for the Viterbi algorithm is available on
Wikipedia. Therefore, referring to the Wikipedia Viterbi site is
off limits (as is looking at code anywhere else on the web).

IMPORTANT: To debug your algorithm, you MUST create a sample test
example from one of the examples we’ve looked at in class or the book. DO
NOT try and debug/test it on stroke data. It will be impossible to tell if you
are correct. You should add the necessary code to hand-construct an HMM
that we have looked at in class examples (or one from the book) and verify
that your algorithm gives you the same output. If you do not implement

6

this algorithm correctly the rest of the assignment will be frustrating.

Viterbi is a complex algorithm, and as such, your comments should be elab-
orate. Include the code for the simple example that you tested with (label
this simple example with a comment that says “Part 1 Viterbi Testing Ex-
ample” AND COMMENT IT OUT so that it doesnt run when you run the
sketch recognition part). Your submission for this portion will include the
Viterbi code with extensive comments, and code that tests your implemen-
tation with a simple example (commented out).

Part 2: Evaluating your classifier

Once you have Viterbi running, take a minute to train and test your clas-
sifier using the feature provided in the code (stroke length, binned into two
discrete values). I suggest you use only a subset of the provided files for
training. Start small (5 or so), and you’ll play around with the number of
training files below.

This classifier does OK on some files, and not so hot on others. But how
can you tell exactly how well it does?

To quantify the classification accuracy in this case, we will use a structure
called a “confusion matrix”. This is simply a matrix that lists how different
strokes were classified, given their true labels. For example:

True Label Classified as Drawing Classified as Text Percent Correct

Drawing 30 10 75%
Text 5 20 80%

That is, out of 40 ‘drawing’ strokes total, 30 were correctly classified and 10
were not. Out of 25 ‘text’ strokes, 20 were classified correctly, and 5 were
not. Note that this is very similar to ‘precision’ and ‘recall’ – just another
way of looking at it.

In the strokeLabeler class, write a function called confusion(trueLabels,

classifications) that takes a list of true labels and a list of labels output
by the classifier for the same set of strokes (in order). It should return a
dictionary with the following structure (based on the table above):

{‘drawing’: {‘drawing’: 30, ‘text’: 10}, ‘text’: {‘drawing’: 5, ‘text’: 20}}

That is, the entries in the main dictionary should be the true labels, and each

7

true label should map to another dictionary giving classification numbers for
those strokes.

Part 3: Improving your classifier

Finally you should explore and include at least one additional feature.

WARNING: You are going to have to compare the basic classifier to your
best classifier. So make a COPY of your strokeHMM.py file and call it
strokeHMMbasic.py (this is where youll keep your completed code from
parts 1 and 2) so you can always run this original classifier. Put your
modifications for part 3 in your strokeHMM.py file.

Note that I have already provided code to calculate the curvature of a stroke,
so you might choose to try to use curvature to improve your classifier. How-
ever, you must add another (or more than one) feature. Possible features
you might want to implement include:

- Distance from side of sketch (or top/bottom of sketch) - Bounding box
area - Bounding box height/width ratio - Drawing speed (max, min,
average) -Proximity to nearest neighbor

This list is just a suggestion. Feel free to get creative.

You also might want to experiment with making features discrete or contin-
uous, and you will certainly want to be methodical about how to discretize
your features. If you get REALLY ambitious you might try modeling con-
tinuous features with a more complex distribution than a simple Gaussian
or relaxing the independence assumption between features (this will require
modifying a substantial amount of the provided code, though.)

Part 4: The writeup

Choose a set of training files and a set of test files. As always, your training
set and your test set should be disjoint!

In a file called results.txt, address each of the following:

• Give the confusion matrix from running the basic classifier and your
best classifer

8

• Briefly (i.e. a couple of sentences) discuss these results.

• Discuss the process you use to build your best classifier:

– Why did you choose the feature(s) you did?

– How did you decide continuous vs. discrete?

– How did you determine thresholds for discrete features?

Extra Credit

You can get extra credit of up to 10 points in one of two ways. First, you
may get extra credit by providing some additional experimental analysis for
your approaches. For example, you could investigate the impact of training
set size on the performance of the two models. This will be worth up to 5
points, depending on the quality of your analysis.

Second, you may get extra credit for a particularly ambitious improved
HMM model. This will be based on your description in your writeup! You
can receive up to 10 points for a very ambitious model (though note still
only 10 points total of extra credit).

When you’re done

When you’re all done, follow the directions on the course web page for sub-
mitting your work. Make sure that your code compiles, that your files are
named as specified and that all your functions have the same name and
number of parameters. If you get an error, try changing the name of the
folder to include a version number and resubmit.

If you worked with a partner, put both people’s last names on the submitted
directory, but only submit one copy.

What to submit

• strokeHMMbasic.py: Your modified version of the HMM file provided
including your Viterbi implementation from part 1, the simple example

9

that you tested it with (label this simple example with a comment that
says “Part 1 Viterbi Testing Example” and comment it out), as well
as your code to calculate the confusion matrix (part 2).

• strokeHMM.py: Your modified version of the HMM file from parts 1
and 2 including all of your additions from part 3

• results.txt: A text file with the analysis of your results, the descrip-
tion of your features, etc.

Commenting and code style

Your code should be commented appropriately (though you don’t need to
go overboard). The most important things:

• Your name (or names) and the assignment number should be at the
top of each file

• Each class and method should have a short “docstring”

• If anything is complicated, put a short note in there to help the graders
out if there are any issues.

There are many possible ways to approach this problem, which makes code
style and comments very important here so that the grader and I can un-
derstand what you did. For this reason, you will lose points for poorly
commented or poorly organized code.

Grading

Part points

Part 1
example 10
label 40

Part 2 15

Part 3 and
part 4 (writeup) 35

style/commenting 10

extra credit 10

total 110 + 10 extra

10

