
CS151 - Assignment 2

Mancala

Due: Wednesday Sept. 22, 2:44pm

Due: Friday Sept. 24, 5pm

The purpose of this assignment is to program some of the search algorithms
and game playing strategies that we have learned in class. In particular,
you will implement two aspects of Mancala (and other two-player games):
search with alpha-beta pruning, and a game board evaluator. Your goals
are to implement alpha-beta pruning correctly, and to create the best AI
player you can. We will hold a tournament between the submitted players.
(However, your placement in the tournament will have no effect on your
grade and involvement is optional).

For this assignment, you may work with one other person (i.e. in a pair) if
you’d like. If you choose to do so, collaboration on the assignment must be
truly collaborative; sitting together and programming together.

1 Introduction to Mancala

Mancala is a two-player game from Africa in which players moves stones
around a board (shown above), trying to capture as many pieces as possi-
ble. In the board above, player 1 owns the bottom row of stones and player 2

1

owns the top row. There are also two special pits on the board, called Man-
calas, in which each player accumulates his or her captured stones (player
1’s Mancala is on the right and player 2’s Mancala is on the left).

To take a turn, a player chooses on of the pits on his or her side of the
board (not the Mancala) and removes all of the stones from that pit. The
player then places one stone in each pit, moving counterclockwise around
the board, starting with the pit immediately next to the chosen pit, in-
cluding the player’s Mancala but NOT the opponent’s Mancala, until the
player has run out of stones. If the player’s last stone ends in his or her
own Mancala, the player gets another turn. If the player’s last stone ends in
an empty pit on his or her own side, the player “captures” all of the stones
in the pit directly across the board from where the last stone was placed
(the opponents stones are removed from the pit and placed in the player’s
Mancala) as well as the last stone placed (the one placed in the empty
pit). The game ends when one player cannot move on his or her turn (i.e.
there are no stone’s left on the player’s side), at which time the other player
captures all of the stones remaining on his or her side of the board.

For slightly more detailed instructions on how to play, visit:
http://en.wikipedia.org/wiki/Mancala

2 Provided Code

On the course web page, I have included some initial code to get you started.
This code includes support for the basic game as well as a simple AI player
(it’s REALLY simple). The starter code contains the following files:

• MancalaBoard.py: A file that contains a class that represents the
Mancala gameboard (similar to TTTBoard from the first assignment).
This class manages the gameboard, knows how to add moves, can
return legal moves, can determine when a player has won, etc.

• Player.py: A player class that can be instantiated with several types
(“constants” defined at the beginning of the class):

– HUMAN: a human player (i.e. prompt the user for a move))

– RANDOM: a player that makes random legal moves

– MINIMAX: a player that uses the minimax algorithm and the score
function to choose its next move, limited by a specified ply depth

2

– ABPRUNE: a player that uses alpha-beta pruned search and the
score function to choose its next move, limited by a specified
ply depth. This player is not yet supported (you will implement
it).

– CUSTOM: the best player you can create. This player is not yet
supported (you will implement it).

Notice that this file also contains a class MancalaPlayer which inherits
from Player and which you will also fill out the details for.

• MancalaGUI.py: A simple GUI for playing the Mancala game. To
invoke the game you call the startGame(p1, p2) function, passing it
two player objects.

• TicTacToe.py: A file that contains a class representing a Tic Tac Toe
gameboard, similar to what you implemented in the first assignment.

Download these files and make sure you can run them. To run a GUI game
between two humans:

load the GUI class and associated functions

>>> execfile(’MancalaGUI.py’)

>>> player1 = Player(1, Player.HUMAN)

>>> player2 = Player(2, Player.HUMAN)

>>> startGame(player1, player2)

Note that the ply parameter is not required for some of the players (e.g.
HUMAN and RANDOM). The GUI will show up when you execute the startGame
command. You should see a window appear (it may appear in the back-
ground). You can now play Mancala with a friend.

But what if you don’t have a friend, you ask? Well, never fear! The computer
will play against you (and you will likely win). To play against the computer
you simply need to create a computer player to play against:

>>> startGame(Player(1, Player.HUMAN), Player(2, Player.RANDOM))

or

>>> startGame(Player(1, Player.HUMAN), Player(2, Player.MINIMAX, 5))

If Mancala isn’t your game, you can also play a very basic version of Tic
Tac Toe using the same player objects (but no GUI provided with Tic Tac
Toe). Use the hostGame function in the TTTBoard class:

3

>>> execfile(’TicTacToe.py’)

>>> board = TTTBoard()

>>> board.hostGame(Player(1, Player.HUMAN), Player(2, Player.MINIMAX, 6))

Once you understand how to run the code, make sure you read though
the provided code and understand what it does. Notice that the minimax
algorithm we discussed in class has already been implemented.

3 A Better Board Scoring Function

The board scoring function in the basic player is too simple to be useful in
Mancala–the agent never looks ahead to see the end of the game until it’s
too late to do anything about it. Your first task is to write an improved
board score in the MancalaPlayer class, a subclass of Player. You may
wish to consider the number of pieces your player currently has in its Man-
cala, the number of blank spaces on its side of the board, the total number
of pieces on its side of the board, specific board configurations that often
lead to large gains, or anything else you can think of.

You should experiment with a number of different heuristics, and you should
systematically test these heuristics to determine which work best. Note that
you can test these heuristics with the MINIMAX player, or you can wait
until you’ve completed part 4 below (alpha-beta pruning). In addition to
your code, you will submit a short (1-2 paragraphs) writeup about how you
chose your final score function. What did you try along the way? What
worked well and how did you determine what works well? This writeup will
be a large part of your grade for this part!

4 Alpha-Beta Pruning

The next part of the assignment is to implement the alpha-beta pruning
search algorithm described in the textbook and in class. Look in the code
to see where to implement this function (in the Player class). I encourage
you to refer to the pseudocode in the book, but make sure you understand
what you are writing.

In your alpha-beta pruning algorithm, you do NOT have to take into ac-
count that players get extra turns when they land in their own Mancalas
with their last stones. You can assume that a player simply gets one move

4

per turn and ignore the fact that this is not always true. Notice that my
provided version of minimax also makes this simplifying assumption. This
makes the scoring function slightly inaccurate, but easier to code.

You will likely want to test your alpha-beta pruning algorithm on something
simpler than Mancala, which is why we have provided the Tic Tac Toe class.
Using alpha-beta pruning, it’s possible for an agent to play a perfect game
of Tic Tac Toe (by setting ply=9) in a reasonable amount of time. The
first move will take the agent awhile (20 seconds or so depending on the
computer), but after that the agent will choose its moves quickly. Contrast
this to minimax, where a ply greater than 5 takes an unreasonable amount
of time.

Test your algorithm carefully by working through the utility values for vari-
ous board configurations and making sure your algorithm is not only choos-
ing the correct move, but pruning the tree appropriately. You will need to
submit at least one example that illustrates that your algorithm correctly
prunes the search tree. For example, consider the board:

X X _

_ O _

_ _ _

Your search will first try an O in the top right corner and should find that
that move leads ultimately to a tie. Now consider this point in the search
tree:

X X _

O O _

_ _ _

where O has tried a move in the left, center spot. On the next level (when
X plays in the top right), the algorithm immediately sees that X will win,
resulting in a score of 0 for O. Since X is the min player, X will choose this
move unless there is a move with an even LOWER value (which there is
not). Thus, the best O can do is a score of 0 if it moves in the middle left.
It does not need to try the other positions for X because it knows that it is
not going to choose to play here (because blocking X in the top row leads
to a score of 50, which is better). Thus the algorithm will prune the rest of
the search tree at this point after it has tried the top right corner for X.

5

To write this part up, you must first illustrate that your program behaves
correctly in this case by adding print statements to your code (that you
must remove before submitting), which might then produce the follow-
ing output:

alpha is 50.0, score is 0.0. Aborted on move 2 in minValue on

XX2

OO5

678

You should then explain what is going on as above. You should choose a
different example when testing your code. Come see me if you have questions
about this part. Your explanation of what is going on is worth a significant
part of your grade, so be sure that you understand the above explanation
and that you can produce one of your own.

5 Creating a custom player

Create a custom player (using any technique you wish) that plays the best
game of Mancala possible. This will be the player that you enter into the
class tournament.

Past years of resourceful students have led me to be more specific about my
specification and restrictions for your players:

• Your player must compile without errors.

• Your player must make its moves in 10 seconds or less (you don’t need
to get fancy with timers or anything, but if it runs significantly longer
than that, it will be disqualified from the tournament).

• Choose a name for your player. Rename both the MancalaPlayer sub-
class and the Player.py file to exactly match your player’s name. (This
is so they can be easily identified in the tournament). For example,
I might name my player “DavesPlayer”. So, my file (which would be
called “DavesPlayer.py”) would contain a class called Player and a
class called DavesPlayer.

• I will not specify a ply for your tournament player. It is your (your
players) responsibility to use the ply that makes it return a move
within 10 seconds. What I mean by this is, I’ll instantiate your player
in this way for the tournament:

6

DavesPlayer.DavesPlayer(1,DavesPlayer.Player.CUSTOM)

In other words, I will not initialize it with a ply and you should either
have a default ply, or have the player determine on its own what ply
it can get to in each move.

• Your player may NOT use a database.

• Your player may NOT connect remotely to another machine.

• Your code must compile in 5 seconds or less.

• Your player may NOT spawn any other processes or threads. The
player must use a single thread.

• Any pre-computed moves can be hard coded, but not written to or
loaded from a file or database.

• Let me know if you have any further questions!

6 Hints!

– For alpha-beta pruning, you likely will need to equivalent minValue
and maxValue functions for your pruning approach, for example minValueAB
andmaxValueAB.

– Notice that minValue, maxValue and minimaxMove return both a score
and a state. When you call a function that returns two values, make
sure that you assign the result to two values, otherwise, you can get
unexpected results. (technically, we only need the score in minValue

and maxValue, however, it was included here for debugging purposes).

– If you want to start Tic Tac Toe from a particular state, comment out
self.reset() in the hostGame method. Then, create a new board
and two new players. Use makeMove to make the appropriate moves to
change the board configuration. When the board state is where you’d
like it to be, you can then call hostGame and since the reset call is
commented out, it will start from that state.

7

7 When you’re done

When you’re all done, follow the directions on the course web page for sub-
mitting your work. Make sure that your code compiles, that your files are
named as specified and that all your functions have the same name and
number of parameters. If you get an error, try changing the name of the
folder to include a version number and resubmit.

If you worked with a partner, put both people’s last names on the submitted
directory.

What to submit

• YourPlayer.py: (i.e. the appropriately renamed “Player.py” file)
This file should contain all the code you have written, including your
score function, your alpha beta pruning algorithm and your custom
player.

• ABcorrectness.txt: Your analysis of the correctness of your alpha-beta
pruning algorithm, as described above.

• boardScore.txt: Your analysis of how you chose your board score func-
tion, as described above.

Commenting and code style

Your code should be commented appropriately (though you don’t need to
go overboard). The most important things:

• Your name (or names) and the assignment number should be at the
top of each file

• Each class and method should have a short “docstring”

• If anything is complicated, put a short note in there to help the graders
out if there are any issues.

There are many possible ways to approach this problem, which makes code
style and comments very important here so that the grader and I can un-
derstand what you did. For this reason, you will lose points for poorly
commented or poorly organized code.

8

Grading

Part points

Board scoring function
code style 5
good heuristics 20
write-up/discussion 15

AB pruning
code style 5
correctness 20
example write-up 20

custom player 10

commenting 5

total 100

Optional – Just for fun!

If you find yourself incredibly interested in this assignment and want to do
a little extra, read on...

As described above, the current minimax implementation does not take into
account the fact that a player gets another move if his or her last stone ends
in the player’s own Mancala. Write a new minimax function, called “min-
imaxFull” and a new alpha-beta pruning function, called “abPruneFull”,
that takes into account that a player gets another move on their turn if they
land in their own Mancala with their last stone.

9

