
CS151 - Assignment 1

Introduction to Python

Due: Wednesday Sept. 8, 2:44pm

In this course we will use Python for our programming assignments. The
purpose of this assignment is to introduce you to Python and help you
get comfortable programming in Python. Most importantly, though, the
assignment will get you started using the Python Documentation (found
at http://www.python.org/doc/). We will give you some useful information
here, but I want you to get comfortable with looking at the documentation
to figure things out.

Getting Started

Python is installed on all of the lab machines in Edmunds 227 and 229, but
you may also install it on your own computer. Go to www.python.org/download/
to obtain it.

Python is an interpreted language, which means you type command di-
rectly at the Python command-line prompt and does not require compiling.
You can start python by opening a command/terminal window and typing
“python” at the prompt. If you installed it yourself, you may need to add
Python to your path.

To get started, try the following commands, pressing enter after each one.
Notice that you do NOT need semi-colons at the end of each line, nor do you
need to declare variables before you use them (Python has implicit typing).

>>> 10**4

>>> a = ’ai is cool’

1

>>> len(a)

>>> a.split()

>>> myL = [1, 2, 3, 4]

>>> myL[1:3]

>>> myL[1:]

Make sure you understand what each of the above statements is doing. Look
at the documentation online for more information. Play around some more
with strings and lists and make sure you’re comfortable with them.

In addition to interacting with Python via the interpreter, you can also save
your programs to files and load them into the Python interpreter.

Open your editor of choice (a common choice is Aquamacs/emacs, which is
installed on all of the lab computers) and type in the following code that
defines a simple list search function and save it as “search.py”:

def listSearch(L, x):

""" Searches through a list L for the element x"""

for item in L:

if item == x:

return True # We found it, so return True

return False # Item not found

A few things to note about this function:

• Python uses colons and indentation to indicate blocks. Indentation is
critical in Python. The colon at the end of a line indicates the start
of a block of code, all of which must be indented to the same degree.
For example the “return False” line is outside the for-loop because
it is indented at the level of the function body, not the for-loop body.

Be careful! Don’t mix spaces and tabs. It won’t work and you’ll get
an error from the interpreter.

• Variables are not declared in Python. The L is understood to be a
list and the x an element in the list, but it’s up to the user to enforce

2

this. Return values are also not specified. If a function includes a
return statement, that’s what it returns. If it does not, then it returns
nothing.

• The for-loop in Python is a little different then the traditional for-loop
and resembles the “for-each” loop in Java. The loop specifies that the
variable “item” should take on each value in the list L. The “range”
function is very useful in getting for-loops in Python to behave like
“normal” for-loops. (See the documentation on for-loops).

• We see two types of comments. The line in triple quotes at the top of
the function is a special comment called the “docstring”. It is displayed
when the user asks for documentation about this function by typing
“help(listSearch)” at the Python prompt. (Try this below). The
parts of the line starting with the symbol # are regular comments.

To run this function, you first need to load the code into the interpreter.
From the normal terminal/command prompt, navigate to the directory con-
taining the file you just created and run Python (by typing “python” and
pressing <enter>). At the interpreter (the >>>) type:

>>> execfile(‘search.py’)

OR

>>> import search; reload(search); from search import *

This second line is overkill for loading your file, but it will definitely load
and/or reload everything you have written in the file search.py so when in
doubt copy and paste this line for any file you are trying to load into Python
in the future (changing the filename as appropriate, of course).

Now that the program is loaded you can run any functions defined in the
file (in this case just one). Try it out, e.g.:

>>> listSearch([2, 5, 1, 6, 10], 1)

True

To get the documentation for your method, try typing help(listSearch).
This opens the documentation in your default editor. When you’re done,
quit the editor and you’ll be back at the interpreter.

When you’re all done, type either “exit()” or “quit()” to exit the Python
interpreter.

3

Now you try: Programming in Python

Once you’re comfortable with the basics of Python and the documentation,
complete each of the problems below.

IMPORTANT For all of the assignments:

1. Include a docstrings and comments for every function and class you
write.

2. Include your name and other pertinent information at the top of each
file.

3. You must name your functions, classes and filenames exactly as speci-
fied, with the same number a parameters, in the same order as define.

4. It should go without saying, but your code MUST compile.

5. Do NOT include any additional print statements, etc. (for example, for
debugging) when you submit your code. This makes it more difficult
for us to grade

Simple functions

Complete the following problems in a file called “pa1pr1.py”:

1. Write a function called twoToTheN(n) that calculates 2n for n >= 0
in log(n) time.

2. Write two functions, one called mean(L) and the other called median(L)

that return the average and the median of a list of numbers, respec-
tively. You may implement this functions recursively or iteratively.
For a list with an even number of elements, let the median be the
average of the two central items.

3. Assume a tree is represented as a nested list of lists. E.g., the tree

4

4

10

33 2

3 14

12

1

Would be represented as the list

[4, [10, [33], [2]], [3], [14, [12]], [1]].

Notice that this tree is neither binary nor ordered in any way and that
each of the leaves are all lists of length 1.

Write two functions: bfs(tree, elem) and dfs(tree, elem) that
perform a breadth first search and depth first search, respectively,
of the tree and return whether or not ‘elem’ is in ’tree’. You will
probably want to read about how lists can be used as Stacks and
Queues in the Python documentation (or it may be more intuitive to
you to just create a Stack and a Queue class).

Objects

Complete this problem in a file called “pa1pr2.py”:
Develop an object for managing a game of Tic Tac Toe. While we covered
the basics of creating objects in Python in class, you will probably want to
refer to Python’s documentation on creating classes. Create a class called
TTTBoard that defines the following functions within that class:

• __init__(self): Initialize a 3 x 3 tic tac toe board. You may assume
that the board is always 3 x 3.

• __str__(self): Returns a string representation of the board. The
left and right edges of the board should be delimited with ‘|’. Empty
spaces with an underscore ‘ ’ and spaces in between each position. For
example, the empty board would be:

5

|_ _ _|

|_ _ _|

|_ _ _|

and after a few moves:

|_ _ _|

|_ X _|

|_ _ O|

• makeMove(self, player, row, col): Places a move for player (spec-
ified as a string “X” or “O”) in the position row, col (where the board
squares are numbered starting at 0, so

>>> b.makeMove("X", 1, 1)

>>> b.makeMove("O",2, 2)

would make the above board). The function returns True if the move
was made and False if not (because the spot was full, or outside the
boundaries of the board).

• hasWon(self,player): Returns True if the player has won the game,
and False if not.

• gameOver(self): Returns True if someone has won or if the board
is full, False otherwise. You may assume only ‘X’ and ‘O’ have been
placed.

• clear(self): Clears the board to reset the game.

You may represent the board however you like. You may define other func-
tions as well. You may wish also to define a function that allows two players
to play the game to make sure your above functions are working correctly.

Commenting

Your code should be commented appropriately (though you don’t need to
go overboard). The most important things:

• Your name and the assignment number should be at the top of each
file

6

• Each class and method should have a short “docstring”

• If anything is complicated, put a short note in there to help the graders
out if there are any issues.

Submitting

When you’re all done, follow the directions on the course web page for
submitting your work. Make sure that your code compiles, that your files
are named as specified and that all your functions have the same name and
number of parameters. If you get an error, try changing the name of the
folder to include a version number and resubmit.

Grading

Part points

twoToTheN 5
mean 5
median 5
BFS 10
DFS 10

__init__ 3
__str__ 3
makeMove 5
hasWon 5
gameOver 3
clear 3

commenting 3

total 50

7

