
CS 51 Fall 2010

CS 51 Laboratory # 12
Pictionary

Objective: To gain experience with Streams.

—

Networked Pictionary This week’s assignment will give you the opportunity to practice working
with Streams in the context of a networked Pictionary program. You are encouraged to work in pairs
on this program. You must do all of the coding together. Only turn in one copy of the program, but
make sure both of your names are on the folder and at the top of each class.

In Pictionary, one player selects a word or phrase to act out, and another player must guess what
the word or phrase is. The only way the player may communicate with the guessing player, though,
is by drawing: the one player draws a picture representing the word or phrase, while the other player
tries to guess it.

Our networked Pictionary program allows two players to play the game. One is the Drawer ; the
other is the Guesser. When the program starts up, a window with two buttons appears. The buttons
are labeled “Drawer” and “Guesser” to allow the player to select which they will be.

If the player selects Drawer, he or she is asked to select a file from which a card is picked. The card
tells the player what to draw. The Drawer ’s window contains a drawing canvas, the card display, and
another label for the Guesser ’s guess. The Drawer then draws their representation of the word/phrase
with the mouse. Guesses appear in the Drawer ’s window when made by the Guesser (with a return at
the end). When the Guesser makes the right guess, the Drawer clicks on the “Right” button to notify
the Guesser and to end the game.

If the player selects Guesser, the window shows a drawing canvas as well as a text field into which
the player can type his or her guess. The Guesser cannot draw on the canvas. Instead, the Drawer ’s
drawing appears in this canvas. At any point, the Guesser can type a guess in the text field. When the
Guesser hits the return/enter key, the guess is sent to the Drawer and appears on the Drawer ’s screen.

Since this is a networked program, we do not provide a demo online. Below are shapshots of a
game in progress. The first display shows the Drawer ’s window. The Drawer is attempting to draw
“graduation.”

1

CS 51 Fall 2010

The next display shows the Guesser ’s window. The Guesser thinks that the drawing looks like a
woman with a nest on her head.

Organization Our implementation comprises four classes:

1. Pictionary, which is a WindowController.

2. Cards, which handles the reading of the cards from file.

3. Guesser, which represents the guesser in the game.

4. Drawer, which represents the drawer in the game.

We have completely implemented the Pictionary and Guesser classes, and most of Cards and
Drawer. We have placed comments in the Cards and Drawer classes indicating where you should add
code and what that code should do.

How to Run the Program Once your program has been written, you will begin by running two
versions of the program by just selecting “run” twice. When both versions are open, move the top-most
window so that you can see both windows. You will need to make one of these the Drawer and the
other the Guesser. Since the Drawer is the server, you must start the Drawer first. You can do this
by selecting the “Drawer” button in one of the windows. (If you mistakenly start the Guesser first, the
System console will display the error message “Could not connect to server”.) The Drawer will ask you
to find the “cards.txt” file. It can be found inside your starter directory. Now select the “Guesser”
button on the other window. You are now ready to play. The game ends when the Drawer clicks the
“Right” button.

The Code The Cards class
Begin by filling in the details of the Cards class. We have implemented everything except the part
of the constructor which reads the card information from the cardFile and loads each line into an
element of the cards array. We have provided a BufferedReader for you to use. You should read each
successive line from this BufferedReader into a new element of the array cards.

2

CS 51 Fall 2010

You will be done when you either run out of stuff to read (readLine() returns null) or you’ve filled
the array. When you are done, the variable numCards must contain the total number of cards. Make
sure this is accurate as it will be used by shuffle. [Yes, we know, we don’t really need to shuffle since
we only ever pull one card from the deck. We just wanted you to see how it could be done!]

The Drawer class
The Drawer acts as a server in a client/server relationship. Its constructor sets up a ServerSocket,
drawingServer, and then waits to accept a connection from the client. Once this has happened, the
Drawer will create an input stream, guessStream, and an output stream, out, in order to communicate
with the Guesser. The writeLine method should send along the output stream the Line segments
that should be drawn on the Guesser’s canvas. (The writeLine method is called from the onMouseDrag
method of Pictionary.java.) From the input stream it will accept guesses.

We have implemented everything but the run() and writeLine methods. The writeLine method’s
only job is to write its Line parameter to the network output stream so that Guesser can pick it up
and write it to its canvas. If anything goes wrong, just call the close() method to close up all open
streams.

Because the Lines being sent to the Guesser are Objects, it is appropriate to send them through
the ObjectOutputStream, out, created in the constructor. Unlike the examples in class, you should
not use a BufferedOutputStream because we want the Lines to appear as soon as they are produced,
not being passed a handful at a time as a BufferedOutputStream would do.

Guesses are Strings. We made guessStream a BufferedReader, as that will handle Strings
appropriately.

Getting Started Read through the Card and Drawer classes, noting the lines that ask you to add
code. Those are the only places where you will need to make changes to the files. You may also find it
useful to refer to the networked Drawing Panel example from class and also look at the Guesser class
to see exactly what it is expecting to receive and send on its end of the streams.

The starter code is set up to allow both the Drawer and Guesser to be on the same computer.
While it is beyond the requirements of the assignment, you might enjoy actually getting them to play
on different computers. To do that, go into the Guesser class and change the Socket constructor call.
Replace “localhost” with the Internet (IP) address of another machine.

To find the name of another computer in the lab, go to that machine and click on the apple icon
at the top left of the screen. Click on “About this Mac”, then “More Info ...”. On the left of the
window that appears, click on “Network”. Look at the top right corner of the window in the line
labeled “Ethernet” and write down the number in the last column, which should look something like
“134.173.66.240”. This number should replace “localhost” in your code. Be sure to place quotation
marks around the number so it is treated as a string. For example, on this computer, I would replace
“localhost” by “134.173.66.240”.

Please be sure, however, that the code you turn in uses “localhost”. If you pass a string that is
not a valid computer name, when you start the Guesser, you will get the message “Unknown host”.
Remember that the Drawer must start first since it is the server.

Submitting Your Work Your program is due on Monday at 11 p.m. When your work is complete,
follow the same procedure for submitting as usual. Make sure the folder name begins with your name(s)
and includes the phrase “Lab12.” Also make sure that the Drawer.java and Card.java files include a
comment containing your name(s).

Before turning in your work, be sure to double check both its logical organization and your style of
presentation. Make your code as clear as possible and include appropriate comments.

3

CS 51 Fall 2010

Table 1: Grading Guidelines

Value Feature
Syntax Style (4 pts total)

1 pt. Descriptive comments
1 pt. Good names
1 pt. Good use of constants
1 pt. Appropriate formatting

Semantic style (3 pts total)
1 pt. conditionals and loops
1 pt. General correctness/design/efficiency issues
1 pts. Parameters, variables, and scoping

Correctness (3 pts total)
1 pt. sending Lines
1 pt. receiving guesses
1/2 pt. reading in data to cards array
1/2 pt. closing up socket and streams

Pictionary.java

import objectdraw.*;

import javax.swing.*;

import java.awt.BorderLayout;

import java.awt.GridLayout;

import java.awt.event.*;

// This plays a Pictionary game on 2 computers. The drawer draws on one

// computer, while the guesser makes guesses on a second computer.

public class Pictionary extends WindowController implements ActionListener {
// Size and location of the drawing area

private static final int DRAWING_WIDTH = 380;

private static final int DRAWING_HEIGHT = 290;

private static final int DRAWING_OFFSET = 10;

// Port for sending pictionary data

private static final int PICTIONARY_PORT = 1340;

// UI component that displays the text of the next card.

private JLabel cardLabel;

// UI component where the guesser enters the guess

private JTextField guess;

// UI component where the drawer sees the guess

4

CS 51 Fall 2010

private JLabel guessLabel;

// Remember starting point of the next line segment

private Location nextLineStarts;

// The deck of cards

private Cards deck;

// Remembers if the user can draw.

private boolean isDrawer = false;

// JPanel to add UI components to under the drawing area

private JPanel gamePanel = new JPanel();

// Buttons to identify which player will draw and which player will guess

private JButton drawerButton, guesserButton;

// Button to signal that the guesser got it right

private JButton rightButton;

// Panels seen by the drawer

private JPanel cardPanel, guessViewPanel, buttonPanel;

// JPanel seen by the guesser

private JPanel guessPanel;

// The drawer object

private Drawer drawer;

// Initialize the display with the drawing area and buttons to identify

// the drawer and the guesser.

public void begin () {
// Draw a border around the drawing area.

new FramedRect (DRAWING_OFFSET, DRAWING_OFFSET,

DRAWING_WIDTH, DRAWING_HEIGHT, canvas);

// Draw the common parts of the drawer and guesser UI

gamePanel.setLayout (new GridLayout (0, 1));

buttonPanel = new JPanel();

drawerButton = new JButton ("Drawer");

buttonPanel.add (drawerButton);

drawerButton.addActionListener (this);

guesserButton = new JButton ("Guesser");

buttonPanel.add (guesserButton);

guesserButton.addActionListener (this);

5

CS 51 Fall 2010

// Create the drawer and guesser specific parts of the UI, but keep

// them hidden initially.

createGuesserDisplay();

createDrawerDisplay();

// Put the UI on the screen.

add (gamePanel, BorderLayout.SOUTH);

}

// Initialize the guesser’s display. The guesser has a text field

// to make guesses in. This is not shown initially.

public void createGuesserDisplay () {
guessPanel = new JPanel();

guessPanel.add (new JLabel ("Guess: "));

guess = new JTextField (20);

guessPanel.add (guess);

gamePanel.add (guessPanel);

guessPanel.setVisible(false);

}

// Show the guesser specific parts of the UI

public void guesserDisplay() {
guessPanel.setVisible(true);

}

// Iniitialize the drawer’s display. The drawer has a field showing

// the card so the drawing user knows what to draw. A second field shows

// the guess made by the guesser. There is also a button for the drawer

// to click when the guesser guesses right. These are all hidden initially.

public void createDrawerDisplay () {
// Create the display

cardPanel = new JPanel();

cardPanel.add (new JLabel ("Card: "));

cardLabel = new JLabel (" ");

cardPanel.add (cardLabel);

gamePanel.add (cardPanel);

guessViewPanel = new JPanel();

guessViewPanel.add (new JLabel ("Guess: "));

guessLabel = new JLabel (" ");

guessViewPanel.add (guessLabel);

gamePanel.add (guessViewPanel);

rightButton = new JButton ("Right");

buttonPanel.add (rightButton);

rightButton.addActionListener (this);

gamePanel.add (buttonPanel);

6

CS 51 Fall 2010

cardPanel.setVisible(false);

guessViewPanel.setVisible (false);

rightButton.setVisible(false);

}

// Show the UI components for the drawer.

public void drawerDisplay() {
cardPanel.setVisible(true);

guessViewPanel.setVisible(true);

rightButton.setVisible(true);

// Create the deck of cards and show the first card.

deck = new Cards ();

cardLabel.setText (deck.nextCard());

this.validate();

}

// Handle clicks of the drawer, guesser, and right buttons.

public void actionPerformed (ActionEvent evt) {
if (evt.getSource() == drawerButton) {

// When the drawer button is clicked, hide the drawer and

// guesser buttons and make the drawer UI components visible.

drawerButton.setVisible(false);

guesserButton.setVisible(false);

drawerDisplay();

buttonPanel.validate();

// Remember that this user is allowed to draw.

isDrawer = true;

// Create the drawer and establish communication with the guesser.

drawer = new Drawer (PICTIONARY_PORT, guessLabel);

}

else if (evt.getSource() == guesserButton) {
// When the guesser button is clicked, hide the drawer and

// guesser buttons and make the guesser UI components visible.

drawerButton.setVisible(false);

guesserButton.setVisible(false);

guesserDisplay();

// Create the guess and establish communication with the drawer.

new Guesser (PICTIONARY_PORT, canvas, guess);

}

else if (evt.getSource() == rightButton) {
// When the write button is clicked, disable any more drawing.

// Close the connection between the drawer and the guesser.

7

CS 51 Fall 2010

isDrawer = false;

drawer.quit();

}
}

// Begin drawing when the user depresses the mouse button

public void onMousePress(Location point){
nextLineStarts = point;

}

// Draw a line segment as the user drags the mouse with the button down.

// Have the drawer transmit the segment to the guesser.

public void onMouseDrag(Location point){
if (isDrawer) {

Line newLine = new Line(nextLineStarts, point, canvas);

nextLineStarts = point;

drawer.writeLine (newLine);

}
}

}

Guesser.java

import objectdraw.*;

import javax.swing.*;

import java.awt.event.*;

import java.io.*;

import java.net.*;

// This class manages the network communication for the user who is making

// guesses.

public class Guesser extends ActiveObject implements ActionListener {
// Location and size of winning message

private static final int WINNING_MSG_OFFSET = 50;

private static final int WINNING_MSG_SIZE = 18;

// The stream on which the Lines are received as the drawer draws them.

private ObjectInputStream in;

// The stream on which guesses are sent as the guesser enters them.

private PrintWriter out;

8

CS 51 Fall 2010

// The canvas where the new Lines should appear.

private DrawingCanvas canvas;

// The field where the guesser types the guesses

private JTextField guessField;

// The socket used for communicating with the server.

private Socket clientSocket;

// Create a new guesser and establish communication with the drawer.

// Parameters:

// pictionaryPort - the port on the server to connect to

// theCanvas - the canvas to draw Lines on

// theGuessField - the UI component where the user types guesses

public Guesser (int pictionaryPort, DrawingCanvas theCanvas,

JTextField theGuessField) {
canvas = theCanvas;

guessField = theGuessField;

guessField.addActionListener (this);

try {
// Establish communication with the server. For now,

// these are assumed to run on the same machine.

clientSocket = new Socket ("localhost", pictionaryPort);

// Initialize the stream to receive Lines on

InputStream clientInStream = clientSocket.getInputStream();

in = new ObjectInputStream (clientInStream);

// Initialize the stream to send guesses on.

out = new PrintWriter (new OutputStreamWriter (clientSocket.getOutputStream()));

} catch (UnknownHostException e) {
System.out.println ("Unknown host.");

return;

} catch (IOException e) {
System.out.println ("Could not create client.");

close();

return;

}

start();

}

// Receive Lines until the Line stream closes.

public void run () {
// Next line received on the stream.

Line nextLine;

try {

9

CS 51 Fall 2010

while (true) {
// Get a line from the stream and put it on the canvas.

nextLine = (Line) in.readObject();

nextLine.addToCanvas (canvas);

canvas.repaint();

}
} catch (IOException e) {

// Assume the connection is closed because the guesser was right, not because

// of a network problem. Display a congratulatory message.

Text rightText = new Text ("You’re right!!", WINNING_MSG_OFFSET,

WINNING_MSG_OFFSET, canvas);

rightText.setFontSize (WINNING_MSG_SIZE);

} catch (Exception e) {
System.out.println (e);

}
close();

}

// React to carriage returns in the guess field by sending the guesses

// to the drawer. Extra carriage return and flush needed for some reason.

public void actionPerformed (ActionEvent evt) {
out.println (guessField.getText());

out.flush();

}

// Clean up all the open streams

private void close () {
if (out != null) {

out.close();

}

try {
if (in != null) {

in.close();

}
} catch (IOException e) {

// ignore it if can’t close in

}

try {
if (clientSocket != null) {

clientSocket.close();

}
} catch (IOException e){

// ignore it if can’t close clientSocket

}
}

}

10

CS 51 Fall 2010

Cards.java

import java.awt.*;

import java.io.*;

import objectdraw.*;

// Cards manages the deck of cards used to play Pictionary. The file

// is a text file. Each line represents a different card.

public class Cards {
// Maximum deck size

private static final int MAX_DECK_SIZE = 20;

// The cards

private String[] cards = new String[MAX_DECK_SIZE];

// The number of cards in the deck.

private int numCards;

// The next card to return in the deck

private int next = 0;

// Construct a new Cards object. Ask the user for a file containg cards.

// Read in the cards to initialize the array. Shuffle the cards.

public Cards () {
// Set up the input stream.

File cardFile = getDeckFile();

try {
BufferedReader in = new BufferedReader (new FileReader (cardFile));

// -- Insert code here to read in the cards. Stop when readLine() returns null.

// -- Be sure numCards contains the number of cards in deck after reading.

// Shuffle the cards

shuffle();

} catch (FileNotFoundException e) {
// If the card file can’t be found, just create a deck with one card.

cards[0] = "cecil sagehen";

numCards = 1;

} catch (IOException e) {
// If we get an error reading the file, make sure the deck has at least one

// card and then shuffle what we did read in.

if (numCards == 0) {
cards[0] = "cecil sagehen";

numCards = 1;

} else {
shuffle();

}

11

CS 51 Fall 2010

}
}

// Using a file dialog, get the name of a file to load

// as the deck of cards. Return null if the user cancels the

// dialog box

private File getDeckFile() {
String fileName;

FileDialog dialog = new FileDialog(new Frame(),

"Select the file of cards.",

FileDialog.LOAD);

dialog.setVisible(true);

if (dialog.getDirectory() != null) {
fileName = dialog.getDirectory() + dialog.getFile();

return new File (fileName);

} else {
return null;

}
}

// Shuffle the cards

private void shuffle() {
RandomIntGenerator random = new RandomIntGenerator (0, numCards - 1);

// The indexes of the cards to swap

int first, second;

// Number of swaps to do in the shuffle

int numSwaps = 100;

// Temporary string for swapping

String temp;

// Swap pairs of random cards repeatedly to shuffle

for (int i = 0; i < numSwaps; i++) {
first = random.nextValue();

second = random.nextValue();

temp = cards[first];

cards[first] = cards[second];

cards[second] = temp;

}
}

// Returns the next card in the deck.

public String nextCard () {
String returnCard = cards[next];

12

CS 51 Fall 2010

next = (next + 1) % numCards;

return returnCard;

}
}

Drawer.java

import objectdraw.*;

import javax.swing.*;

import java.net.*;

import java.io.*;

// This class manages the communication for the user doing the drawing.

public class Drawer extends ActiveObject {
// UI component that displays the guesser’s guesses.

private Label guessLabel;

// Server connection

private ServerSocket drawingServer;

// Socket that the drawer uses to communicate with the guesser

private Socket drawingSocket;

// Output stream used to write Lines to the guesser.

private ObjectOutputStream out;

// Stream that guesses arrive on

private BufferedReader guessStream;

private static final int TIMEOUT = 60000; // 1 minute

// Create a new drawer. The drawer acts as a server.

// Parameters:

// pictionaryPort - the port that Pictionary uses for communication

// theGuessLabel - the UI component where guesses should be displayed

// when they arrive over the socket’s input stream

public Drawer (int pictionaryPort, Label theGuessLabel) {
guessLabel = theGuessLabel;

try {
// Register as a server

drawingServer = new ServerSocket (pictionaryPort);

// Set a timeout for how long to wait for the client to connect.

drawingServer.setSoTimeout (TIMEOUT);

// Wait for the client to connect.

drawingSocket = drawingServer.accept();

13

CS 51 Fall 2010

// Initialize the output stream used to send Lines to the guesser.

out = new ObjectOutputStream (

drawingSocket.getOutputStream());

// Initialize the input stream where the guesses arrive.

guessStream = new BufferedReader (

new InputStreamReader (

drawingSocket.getInputStream()));

} catch (InterruptedIOException e) {
System.out.println ("Connection timed out. Closing server.");

close();

return;

} catch (IOException e) {
System.out.println ("Could not create server.");

System.out.println (e);

close();

return;

}
start();

}

// Accept user guesses on the input stream and display them in the

// guess label.

public void run () {
// -- Repeatedly display the guesses to the drawer as they arrive.

// -- quit when guessStream goes away (i.e., readLine() throws exception)

// Your code here!

// Clean up by closing the stream, socket, and shutting down the server

// connection.

close();

}

// Write a line onto the output stream so that the guesser can see it.

// Be sure to close() if anything goes wrong.

// Parameter

// nextScribble - the line to pass to the guesser

public void writeLine (Line nextScribble) {
// your code here

}

public void quit () {
close();

}

// Close everything that is still open.

private void close () {

14

CS 51 Fall 2010

try {
if (out != null) {

out.close();

}
} catch (IOException e) { }
try {

if (guessStream != null)

{
guessStream.close();

}
} catch (IOException e) { }
try {

if (drawingSocket != null)

{
drawingSocket.close();

}
} catch (IOException e) { }
try {

if (drawingServer != null)

{
drawingServer.close();

}
} catch (IOException e) { }

}
}

15

