Evaluation

David Kauchak cs160 Fall 2009

adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture8-evaluation.ppt

Administrative

- How are things going?
- Slides
- Points

Zipf's law

IR Evaluation

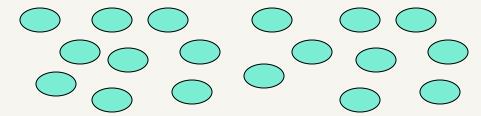
- For hw1, you examined 5 systems. How did you evaluate the systems/queries?
- What are important features for an IR system?
- How might we automatically evaluate the performance of a system? Compare two systems?
- What data might be useful?

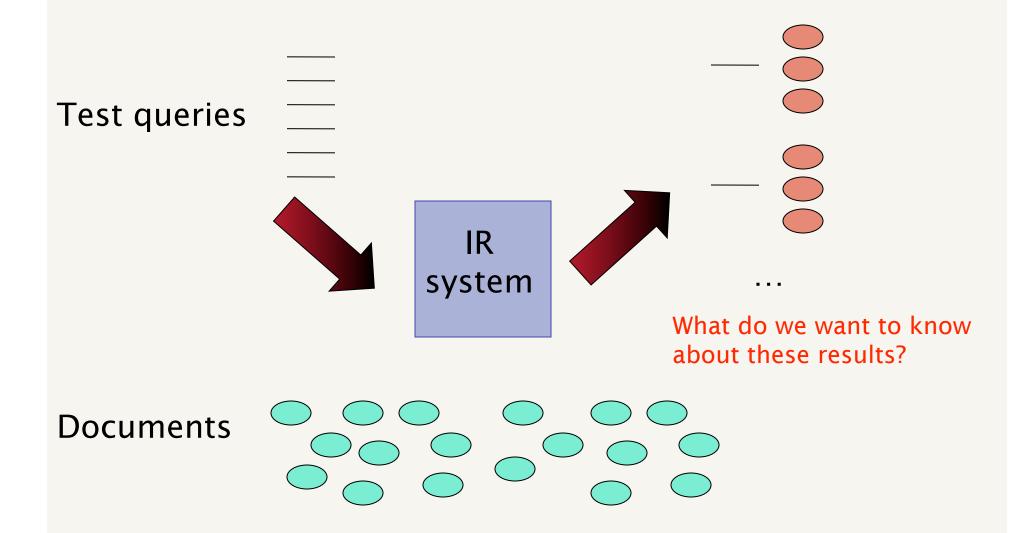
Measures for a search engine

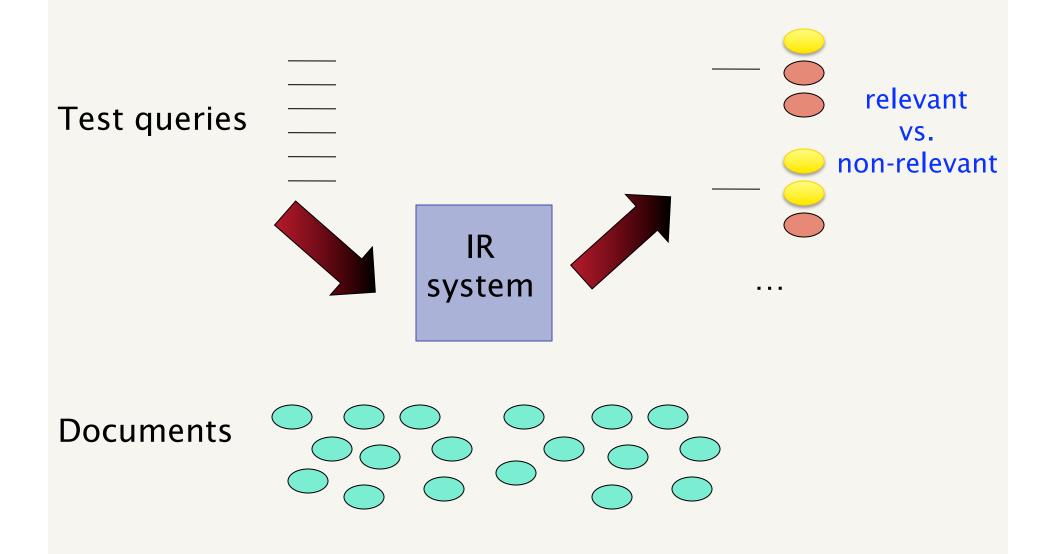
- How fast does it index (how frequently can we update the index)
- How fast does it search
- How big is the index
- Expressiveness of query language
- UI
- Is it free?
- Quality of the search results

Measuring user performance

- Who is the user we are trying to make happy and how can we measure this?
- Web search engine
 - user finds what they want and return to the engine
 - measure rate of return users
 - Financial drivers
- eCommerce site
 - user finds what they want and make a purchase
 - Is it the end-user, or the eCommerce site, whose happiness we measure?
 - Measure: time to purchase, or fraction of searchers who become buyers, revenue, profit, ...
- Enterprise (company/govt/academic)
 - Care about "user productivity"
 - How much time do my users save when looking for information?

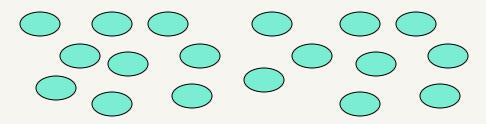

Common IR evaluation


- Most common proxy: relevance of search results
- Relevance is assessed relative to the information need not the query
- Information need: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine
- Query: wine red white heart attack effective
- You evaluate whether the doc addresses the information need, NOT whether it has these words

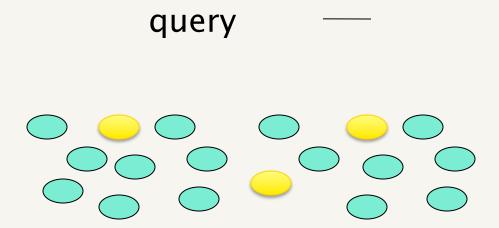

Test queries

IR system

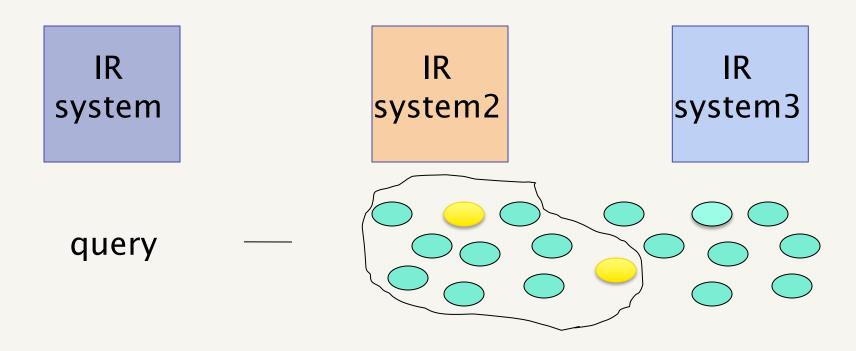
Documents


Test queries

What if we want to test another system? 10 more systems?

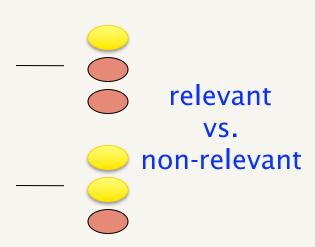

IR system2

Documents


Data for evaluation: option 1

- For each query, identify ALL the relevant (and non-relevant) documents
- Given a new system, we know whether the results retrieved are relevant or not


Data for evaluation: option 2


- In many domains, finding ALL relevant documents is infeasible (think the web)
- Instead, evaluate a few sets of results for a few systems,
 and assume these are all the relevant documents

How can we quantify the results?

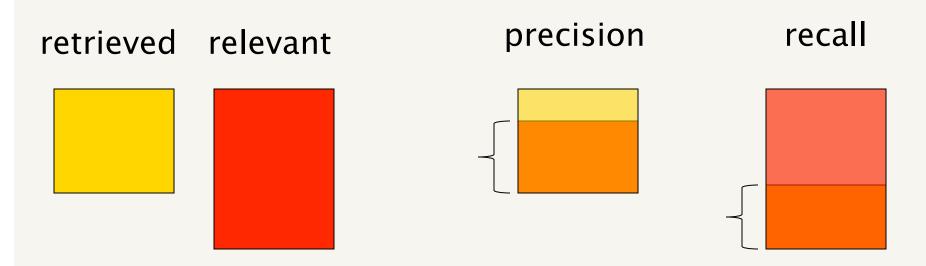
- We want a numerical score to quantify how well our system is doing
- Allows us to compare systems
- To start with, let's just talk about boolean retrieval

. . .

Accuracy?

- The search engine divides ALL of the documents into two sets: relevant and nonrelevant
- The accuracy of a search engine is the proportion of these that it got right
- Accuracy is a commonly used evaluation measure in machine learning classification work
- Is this a good approach for IR?

Accuracy?


 How to build a 99.9999% accurate search engine on a low budget....

snoogle.com		
Search for:		
0 matching results found.		

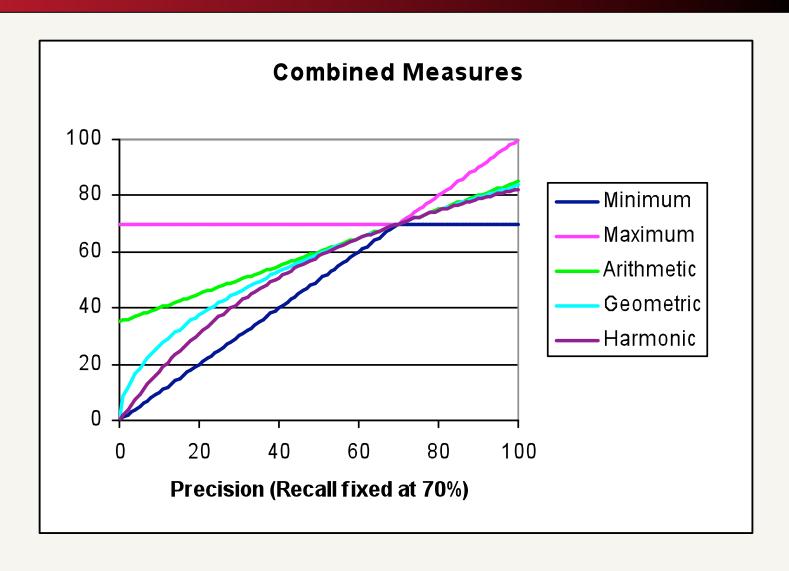
People doing information retrieval want to find something and have a certain tolerance for junk.

Unranked retrieval evaluation: Precision and Recall

- Precision: fraction of retrieved docs that are relevant = P(relevant|retrieved)
- Recall: fraction of relevant docs that are retrieved= P(retrieved|relevant)

Precision/Recall tradeoff

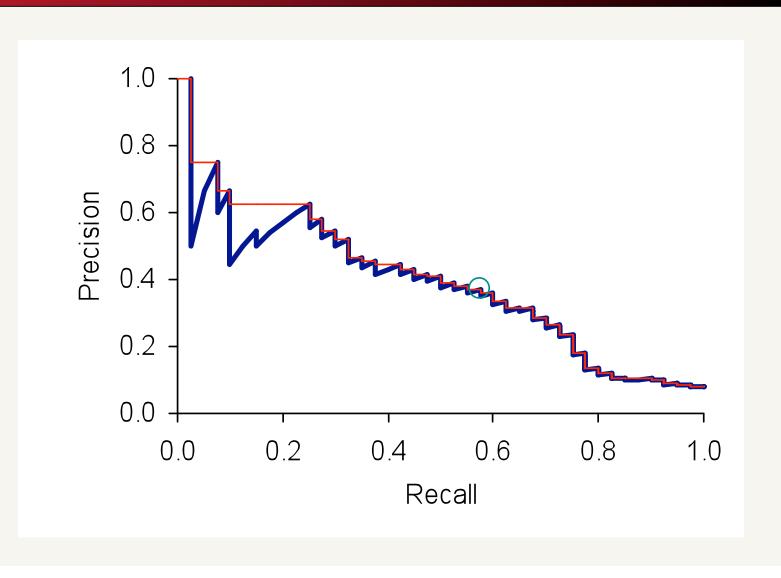
- Often a trade-off between better precision and better recall
- How can we increase recall?
 - Increase the number of documents retrieved (for example, return all documents)
- What impact will this likely have on precision?
 - Generally, retrieving more documents will result in a decrease in precision`

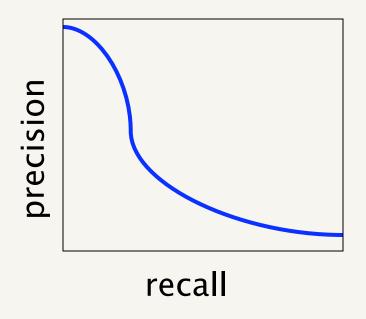

A combined measure: F

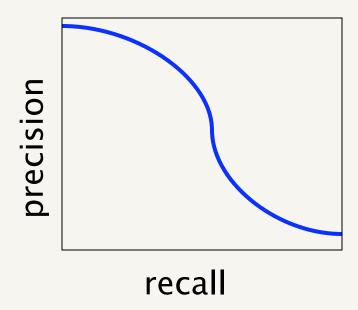
Combined measure that assesses precision/recall tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- People usually use balanced F₁ measure
 - i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$
- Harmonic mean is a conservative average

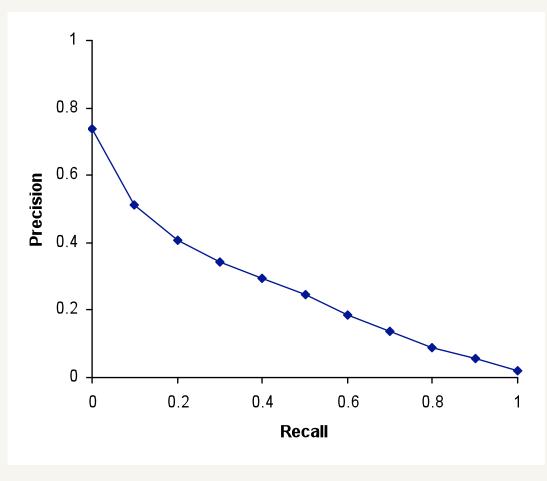

F_1 and other averages


Evaluating ranked results


- Most IR systems are ranked systems
- We want to evaluate the systems based on their ranking of the documents
- What might we do?
- With a ranked system, we can look at the precision/ recall for the top K results
- Plotting this over K, gives us the precision-recall curve

A precision-recall curve

Which is system is better?

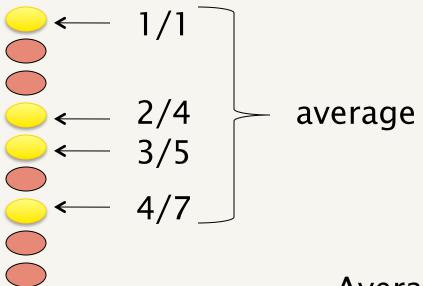


Evaluation

- Graphs are good, but people want summary measures!
 - Precision at fixed retrieval level
 - Precision-at-k: Precision of top k results
 - Perhaps appropriate for most of web search: all people want are good matches on the first one or two results pages
 - But: averages badly and has an arbitrary parameter of k
- Any way to capture more of the graph?
 - 11-point average precision
 - Take the precision at 11 levels of recall varying from 0 to 1 by tenths of the documents and average them
 - Evaluates performance at all recall levels (which may be good or bad)

Typical (good) 11 point precisions

SabIR/Cornell 8A1 11pt precision from TREC 8 (1999)



11 point is somewhat arbitrary...

- What are we really interested in?
 - How high up are the relevant results
- How might we measure this?
 - Average position in list
- Any issue with this?

- Query dependent, i.e. if there are more relevant documents, will be higher (worse)
- Mean average precision (MAP)
 - Average of the precision value obtained for the top k documents, each time a relevant doc is retrieved

MAP

Average of the precision value obtained for the top *k* documents, **each time** a relevant doc is retrieved

Other issues: human evaluations

- Humans are not perfect or consistent
- Often want multiple people to evaluate the results

Number of docs	Judge 1	Judge 2
300	Relevant	Relevant
70	Nonrelevant	Nonrelevant
20	Relevant	Nonrelevant
10	Nonrelevant	relevant

Multiple human labelers

- Can we trust the data?
- How do we use multiple judges?

Number of docs	Judge 1	Judge 2
300	Relevant	Relevant
70	Nonrelevant	Nonrelevant
20	Relevant	Nonrelevant
10	Nonrelevant	relevant

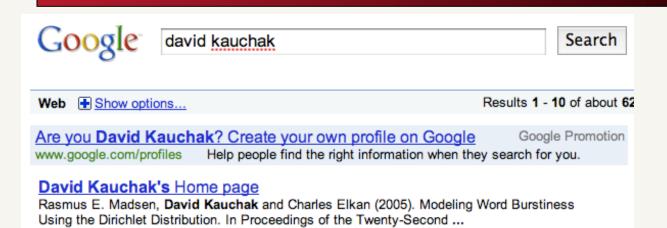
Number of docs	Judge 1	Judge 2
100	Relevant	Relevant
30	Nonrelevant	Nonrelevant
200	Relevant	Nonrelevant
70	Nonrelevant	relevant

Measuring inter-judge agreement

Is there any problem with this?

$$370/400 = 92.5\%$$

$$130/400 = 32.5\%$$


Number of docs	Judge 1	Judge 2
300	Relevant	Relevant
70	Nonrelevant	Nonrelevant
20	Relevant	Nonrelevant
10	Nonrelevant	relevant

Number of docs	Judge 1	Judge 2
100	Relevant	Relevant
30	Nonrelevant	Nonrelevant
200	Relevant	Nonrelevant
70	Nonrelevant	relevant

Measuring inter-judge (dis)agreement

- Kappa measure
 - Agreement measure among judges
 - Designed for categorical judgments
 - Corrects for chance agreement
- Kappa = [P(A) P(E)] / [1 P(E)]
- P(A) proportion of time judges agree
- P(E) what agreement would be by chance
- Kappa = 0 for chance agreement, 1 for total agreement
- Kappa above 0.7 is usually considered good enough

Other issues: pure relevance

[PDF] David Kauchak

File Format: PDF/Adobe Acrobat - View

cseweb.ucsd.edu/~dkauchak/ - Cached - Similar - 🖃 🖹 🔀

David Kauchak and Francine Chen (2005). Feature-Based Segmentation of ... David Kauchak and Charles Elkan (2003). Learning Rules to Improve a Machine ... cseweb.ucsd.edu/users/dkauchak/job/David.Kauchak.cv.pdf - Similar - Tailar - Tailar

■ Show more results from cseweb.ucsd.edu

David Kauchak - LinkedIn

San Francisco Bay Area - Research Scientist

View **David Kauchak's** professional profile on LinkedIn. LinkedIn is the world's largest business network, helping professionals like **David Kauchak** discover ... www.linkedin.com/pub/david-kauchak/0/792/922 - Cached - Similar - Tailor -

Scientific Commons: David Kauchak

David Kauchak. My research interests lie at the intersection of machine ... David Kauchak. Recent work in information extraction has brought about a new ... en.scientificcommons.org/david kauchak - Cached - Similar - Talk

Why does Google do this?

Other issues: pure relevance

- Relevance vs Marginal Relevance
 - A document can be redundant even if it is highly relevant
 - Duplicates
 - The same information from different sources
 - Marginal relevance is a better measure of utility for the user
- Measuring marginal relevance can be challenging, but search engines still attempt to tackle the problem

Evaluation at large search engines

- Search engines have test collections of queries and hand-ranked results
- Search engines also use non-relevance-based measures.
 - Clickthrough on first result
 - Not very reliable if you look at a single clickthrough ... but pretty reliable in the aggregate.
 - Studies of user behavior in the lab
 - A/B testing

A/B Testing

- Google wants to test the variants below to see what the impact of the two variants is
- How can they do it?

A/B testing

- Have most users use old system
- Divert a small proportion of traffic (e.g., 1%) to the new system that includes the innovation
- Evaluate with an "automatic" measure like clickthrough on first result
- Now we can directly see if the innovation does improve user happiness

Guest speaker today

Ron Kohavi

http://videolectures.net/kdd07_kohavi_pctce/