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Administrative 

  Assignment 1 
  Assignment 2 

  Look at the assignment by Wed! 
  New turnin procedure 

  Class participation 



Stoplist and dictionary size 



Recap: Queries as vectors 

  Represent the queries as vectors 
  Represent the documents as vectors 

  proximity = similarity of vectors 

  What do the entries in the vector represent in the 
tf-idf scheme? 



Recap: tf-idf weighting 

  The tf-idf weight of a term is the product of its tf weight 
and its idf weight. 

  For each document, there is one entry for every term 
in the vocabulary 

  Each entry in that vector is the tf-idf weight above 

  How do we calculate the similarity? 
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Recap: cosine(query,document) 
Dot product Unit vectors 

cos(q,d) is the cosine similarity of q and d … or, 
equivalently, the cosine of the angle between q and d. 



Outline 

  Calculating tf-idf score 
  Faster ranking 
  Static quality scores 
  Impact ordering 
  Cluster pruning 



Calculating cosine similarity 

  Traverse entries calculating 
the product 

  Accumulate the vector lengths 
and divide at the end 

  How can we do it faster if we 
have a sparse representation? 
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Calculating cosine tf-idf from index 

  What should we store in the 
index? 

  How do we construct the 
index? 

  How do we calculate the 
document ranking? 

w1 

… 

w2 

w3 

index 
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I did enact Julius 
Caesar I was killed  
i' the Capitol;  
Brutus killed me. 

Doc 1 

So let it be with 
Caesar. The noble 
Brutus hath told you 
Caesar was ambitious 

Doc 2 

Index construction:  
collect documentIDs 

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2



Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction: 
sort dictionary 

sort based on terms 



Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction: 
create postings list 

create postings lists 
from identical entries 

word 1 

word 2 

word n 

… 
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Do we have all the information we need? 



Obtaining tf-idf weights 

  Store the tf initially in the index 
  In addition, store the number of documents the 

term occurs in in the index 

  How do we get the idfs? 
  We can either compute these on the fly using the 

number of documents in each term 
  We can make another pass through the index and 

update the weights for each entry 
  Pros and cons of each approach? 



Do we have everything we need? 

  Still need the document lengths 
  Store these in a separate data structure 
  Make another pass through the data and update 

the weights 
  Benefits/drawbacks? 
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Computing cosine scores 

  Similar to the merge operation 
  Accumulate scores for each document 

  float scores[N] = 0 
  for each query term t 

  calculate wt,q  
  for each entry in t’s postings list: docID, wt,d 

  scores[docID] += wt,q * wt,d 

  return top k components of scores 



Efficiency 

  What are the inefficiencies here? 
  Only want the scores for the top k but are 

calculating all the scores 
  Sort to obtain top k? 

  float scores[N] = 0 
  for each query term t 

  calculate wt,q  
  for each entry in t’s postings list: docID, wt,d 

  scores[docID] += wt,q * wt,d 

  return top k components of scores 



Outline 

  Calculating tf-idf score 
  Faster ranking 
  Static quality scores 
  Impact ordering 
  Cluster pruning 



Efficient cosine ranking 

  What we’re doing in effect: solving the K-
nearest neighbor problem for a query vector 

  In general, we do not know how to do this  
efficiently for high-dimensional spaces 

  Two simplifying assumptions 
  Queries are short! 
  Assume no weighting on query terms and that 

each query term occurs only once 
  Then for ranking, don’t need to normalize query 

vector 



Computing cosine scores 

  Assume no weighting on query terms and that 
each query term occurs only once 

  float scores[N] = 0 
  for each query term t 

  for each entry in t’s postings list: docID, wt,d 
  scores[docID] += wt,d 

  return top k components of scores 



Selecting top K 

  We could sort the scores and then pick the top K 
  What is the runtime of this approach? 

  O(N log N) 
  Can we do better? 
  Use a heap (i.e. priority queue) 

  Build a heap out of the scores 
  Get the top K scores from the heap 
  Running time? 

  O(N + K log N) 

  For N=1M, K=100, this is about 10% of the cost  
of sorting 
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Inexact top K 

  What if we don’t return the exactly the top K, 
but a set close to the top K? 
  User has a task and a query formulation 
  Cosine is a proxy for matching this task/query 
  If we get a list of K docs “close” to the top K by 

cosine measure, should still be ok 



Current approach 

Documents 

Score documents 

Pick top K 



Approximate approach 

Documents 

Select A candidates 
   K < A << N 

Pick top K in A 

Score documents in A 



Exact vs. approximate 

  Depending on how A is selected and how large A 
is, can get different results 

  Can think of it as pruning the initial set of docs 
  How might we pick A? 

Exact 

Approximate 



Docs containing many query terms 

  So far, we consider any document with at least 
one query term in it 

  For multi-term queries, only compute scores for 
docs containing several of the query terms 
  Say, at least 3 out of 4 
  Imposes a “soft conjunction” on queries seen on 

web search engines (early Google) 
  Easy to implement in postings traversal 



3 of 4 query terms 

Brutus 

Caesar 

Calpurnia 

1 2 3 5 8 13 21 34 

2 4 8 16 32 64 128 

13 16 

Antony 3 4 8 16 32 64 128 

32 

Scores only computed for 8, 16 and 32. 



High-idf query terms only 

  For a query such as catcher in the rye 
  Only accumulate scores from catcher and rye 
  Intuition: in and the contribute little to the scores 

and don’t alter rank-ordering much 
  Benefit: 

  Postings of low-idf terms have many docs → these 
(many) docs get eliminated from A 

  Can we calculate this efficiently from the index? 



Champion lists 
  Precompute for each dictionary term the r 

docs of highest weight in the term’s postings 
  Call this the champion list for a term 
  (aka fancy list or top docs for a term) 

  This must be done at index time 

Brutus 

Caesar 1 2 3 5 8 13 21 34 

2 4 8 16 32 64 128 

Antony 3 4 8 16 32 64 128 



Champion lists 

  At query time, only compute scores for docs in the 
champion list of some query term 
  Pick the K top-scoring docs from amongst these 

  Are we guaranteed to always get K documents? 

Brutus 

Caesar 

Antony 8 16 128 

8 32 128 

1 16 128 



High and low lists 

  For each term, we maintain two postings lists 
called high and low 
  Think of high as the champion list 

  When traversing postings on a query, only 
traverse high lists first 
  If we get more than K docs, select the top K and 

stop 
  Else proceed to get docs from the low lists 

  A means for segmenting index into two tiers 



Tiered indexes 

  Break postings up into a hierarchy of lists 
  Most important 
  … 
  Least important 

  Inverted index thus broken up into tiers of 
decreasing importance 

  At query time use top tier unless it fails to yield K 
docs 
  If so drop to lower tiers 



Example tiered index 



Quick review 

  Rather than selecting the best K scores from all 
N documents 
  Initially filter the documents to a smaller set 
  Select the K best scores from this smaller set 

  Methods for selecting this smaller set 
  Documents with more than one query term 
  Terms with high IDF 
  Documents with the highest weights 



Discussion 

  How can Champion Lists be implemented in an 
inverted index?  How do we modify the data 
structure? 

Brutus 

Caesar 1 2 3 5 8 13 21 34 

2 4 8 16 32 64 128 

Antony 3 4 8 16 32 64 128 



Outline 

  Calculating tf-idf score 
  Faster ranking 
  Static quality scores 
  Impact ordering 
  Cluster pruning 



Static quality scores 

  We want top-ranking documents to be both 
relevant and authoritative 

  Relevance is being modeled by cosine scores 
  Authority is typically a query-independent 

property of a document 
  What are some examples of authority signals? 

  Wikipedia among websites 
  Articles in certain newspapers 
  A paper with many citations 
  Many diggs, Y!buzzes or del.icio.us marks 
  Pagerank 



Modeling authority 

  Assign to each document a query-independent 
quality score in [0,1] denoted g(d) 

  Thus, a quantity like the number of citations is 
scaled into [0,1] 

  Google PageRank 



Net score 

  We want a total score that combines cosine 
relevance and authority 
  net-score(q,d) = g(d) + cosine(q,d) 
  Can use some other linear combination than an 

equal weighting 
  Indeed, any function of the two “signals” of user 

happiness 
  Now we seek the top K docs by net score 

  Doing this exactly, is similar to incorporating 
document length normalization 



Top K by net score – fast methods 
  Order all postings by g(d) 
  Is this ok?  Does it change our merge/traversal 

algorithms? 
  Key: this is still a common ordering for all postings 

Brutus 

Caesar 

Antony 1 2 

3 1 

3 2 

2 

g(1) = 0.5,  g(2) = .25,   g(3) = 1 



Why order postings by g(d)? 

  Under g(d)-ordering, top-scoring docs likely to 
appear early in postings traversal 

  In time-bound applications (say, we have to 
return whatever search results we can in 50 ms), 
this allows us to stop postings traversal early 

Brutus 

Caesar 

Antony 1 2 

3 1 

3 2 

2 

g(1) = 0.5,  g(2) = .25,   g(3) = 1 



Champion lists in g(d)-ordering 

  We can still use the notion of champion lists… 

  Combine champion lists with g(d)-ordering 
  Maintain for each term a champion list of the r 

docs with highest g(d) + tf-idftd 

  Seek top-K results from only the docs in these 
champion lists 



Outline 

  Calculating tf-idf score 
  Faster ranking 
  Static quality scores 
  Impact ordering 
  Cluster pruning 



Impact-ordered postings 

  Why do we need a common ordering of the postings list? 
  Allows us to easily traverse the postings list and check for 

intersection 

  Is that required for our tf-idf traversal algorithm? 

  float scores[N] = 0 
  for each query term t 

  for each entry in t’s postings list: docID, wt,d 
  scores[docID] += wt,d 

  return top k components of scores 



Impact-ordered postings 

  The ordering no long plays a role 
  Our algorithm for computing document scores 

“accumulates” scores for each document 

  Idea: sort each postings list by wt,d 
  Only compute scores for docs for which wt,d is 

high enough 
  Given this ordering, how might we construct A 

when processing a query? 



Impact-ordering: early termination 

  When traversing a postings list, stop early after 
either 
  a fixed number of r docs 
  wt,d  drops below some threshold 

  Take the union of the resulting sets of docs 
  One from the postings of each query term 

  Compute only the scores for docs in this union 



Impact-ordering: idf-ordered terms 

  When considering the postings of query terms 
  Look at them in order of decreasing idf 

  High idf terms likely to contribute most to score 
  As we update score contribution from each query 

term 
  Stop if doc scores relatively unchanged 

  Can apply to cosine or other net scores 



Outline 

  Calculating tf-idf score 
  Faster ranking 
  Static quality scores 
  Impact ordering 
  Cluster pruning 



Cluster pruning: preprocessing 

  Pick √N docs, call these leaders 
  For every other doc, pre-compute 

nearest leader 
  Docs attached to a leader are called 

followers 
  Likely: each leader has ~ √N 

followers 



 Cluster pruning: query processing 

  Process a query as follows: 
  Given query Q, find its nearest leader L 
  Seek K nearest docs from among L’s 

followers 



Visualization 

Query 

Leader Follower 



Cluster pruning variants 
  Have each follower attached to b1 (e.g. 2) nearest leaders 
  From query, find b2 (e.g. 3) nearest leaders and their followers 

Query 

Leader Follower 



Can Microsoft's Bing, or Anyone, 
Seriously Challenge Google? 

  Will it ever be possible to dethrone Google as the 
leader in web search?  

  What would a search engine need to improve 
upon the model Google offers?  

  Is Bing a serious threat to Google’s dominance?  


