
Faster TF-IDF

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt

Administrative

  Assignment 1
  Assignment 2

  Look at the assignment by Wed!
  New turnin procedure

  Class participation

Stoplist and dictionary size

Recap: Queries as vectors

  Represent the queries as vectors
  Represent the documents as vectors

  proximity = similarity of vectors

  What do the entries in the vector represent in the
tf-idf scheme?

Recap: tf-idf weighting

  The tf-idf weight of a term is the product of its tf weight
and its idf weight.

  For each document, there is one entry for every term
in the vocabulary

  Each entry in that vector is the tf-idf weight above

  How do we calculate the similarity?
€

w
t ,d

= tft,d × log(N /dft)

Recap: cosine(query,document)
Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Calculating cosine similarity

  Traverse entries calculating
the product

  Accumulate the vector lengths
and divide at the end

  How can we do it faster if we
have a sparse representation?

€

cos(q ,

d) =

qidii=1

V
∑

qi
2

i=1

V
∑ di

2
i=1

V
∑

tf-idf entries

Calculating cosine tf-idf from index

  What should we store in the
index?

  How do we construct the
index?

  How do we calculate the
document ranking?

w1 

…

w2 

w3 

index

€

cos(q ,

d) =

 q
 q

•

d

d

=
qidii=1

V
∑

qi
2

i=1

V
∑ di

2
i=1

V
∑€

w
t ,d

= tft,d × log(N /dft)

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Index construction:
collect documentIDs

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
sort dictionary

sort based on terms

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
create postings list

create postings lists
from identical entries

word 1 

word 2 

word n 

…

€

w
t ,d

= tft,d × log(N /dft)

Do we have all the information we need?

Obtaining tf-idf weights

  Store the tf initially in the index
  In addition, store the number of documents the

term occurs in in the index

  How do we get the idfs?
  We can either compute these on the fly using the

number of documents in each term
  We can make another pass through the index and

update the weights for each entry
  Pros and cons of each approach?

Do we have everything we need?

  Still need the document lengths
  Store these in a separate data structure
  Make another pass through the data and update

the weights
  Benefits/drawbacks?

€

cos(q ,

d) =

 q
 q

•

d

d

=
qidii=1

V
∑

qi
2

i=1

V
∑ di

2
i=1

V
∑

Computing cosine scores

  Similar to the merge operation
  Accumulate scores for each document

  float scores[N] = 0
  for each query term t

  calculate wt,q
  for each entry in t’s postings list: docID, wt,d

  scores[docID] += wt,q * wt,d

  return top k components of scores

Efficiency

  What are the inefficiencies here?
  Only want the scores for the top k but are

calculating all the scores
  Sort to obtain top k?

  float scores[N] = 0
  for each query term t

  calculate wt,q
  for each entry in t’s postings list: docID, wt,d

  scores[docID] += wt,q * wt,d

  return top k components of scores

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Efficient cosine ranking

  What we’re doing in effect: solving the K-
nearest neighbor problem for a query vector

  In general, we do not know how to do this
efficiently for high-dimensional spaces

  Two simplifying assumptions
  Queries are short!
  Assume no weighting on query terms and that

each query term occurs only once
  Then for ranking, don’t need to normalize query

vector

Computing cosine scores

  Assume no weighting on query terms and that
each query term occurs only once

  float scores[N] = 0
  for each query term t

  for each entry in t’s postings list: docID, wt,d
  scores[docID] += wt,d

  return top k components of scores

Selecting top K

  We could sort the scores and then pick the top K
  What is the runtime of this approach?

  O(N log N)
  Can we do better?
  Use a heap (i.e. priority queue)

  Build a heap out of the scores
  Get the top K scores from the heap
  Running time?

  O(N + K log N)

  For N=1M, K=100, this is about 10% of the cost
of sorting

1

.9 .3

.8 .3

.1

.1

Inexact top K

  What if we don’t return the exactly the top K,
but a set close to the top K?
  User has a task and a query formulation
  Cosine is a proxy for matching this task/query
  If we get a list of K docs “close” to the top K by

cosine measure, should still be ok

Current approach

Documents

Score documents

Pick top K

Approximate approach

Documents

Select A candidates
 K < A << N

Pick top K in A

Score documents in A

Exact vs. approximate

  Depending on how A is selected and how large A
is, can get different results

  Can think of it as pruning the initial set of docs
  How might we pick A?

Exact

Approximate

Docs containing many query terms

  So far, we consider any document with at least
one query term in it

  For multi-term queries, only compute scores for
docs containing several of the query terms
  Say, at least 3 out of 4
  Imposes a “soft conjunction” on queries seen on

web search engines (early Google)
  Easy to implement in postings traversal

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Scores only computed for 8, 16 and 32.

High-idf query terms only

  For a query such as catcher in the rye
  Only accumulate scores from catcher and rye
  Intuition: in and the contribute little to the scores

and don’t alter rank-ordering much
  Benefit:

  Postings of low-idf terms have many docs → these
(many) docs get eliminated from A

  Can we calculate this efficiently from the index?

Champion lists
  Precompute for each dictionary term the r

docs of highest weight in the term’s postings
  Call this the champion list for a term
  (aka fancy list or top docs for a term)

  This must be done at index time

Brutus

Caesar 1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

Antony 3 4 8 16 32 64 128

Champion lists

  At query time, only compute scores for docs in the
champion list of some query term
  Pick the K top-scoring docs from amongst these

  Are we guaranteed to always get K documents?

Brutus

Caesar

Antony 8 16 128

8 32 128

1 16 128

High and low lists

  For each term, we maintain two postings lists
called high and low
  Think of high as the champion list

  When traversing postings on a query, only
traverse high lists first
  If we get more than K docs, select the top K and

stop
  Else proceed to get docs from the low lists

  A means for segmenting index into two tiers

Tiered indexes

  Break postings up into a hierarchy of lists
  Most important
  …
  Least important

  Inverted index thus broken up into tiers of
decreasing importance

  At query time use top tier unless it fails to yield K
docs
  If so drop to lower tiers

Example tiered index

Quick review

  Rather than selecting the best K scores from all
N documents
  Initially filter the documents to a smaller set
  Select the K best scores from this smaller set

  Methods for selecting this smaller set
  Documents with more than one query term
  Terms with high IDF
  Documents with the highest weights

Discussion

  How can Champion Lists be implemented in an
inverted index? How do we modify the data
structure?

Brutus

Caesar 1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

Antony 3 4 8 16 32 64 128

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Static quality scores

  We want top-ranking documents to be both
relevant and authoritative

  Relevance is being modeled by cosine scores
  Authority is typically a query-independent

property of a document
  What are some examples of authority signals?

  Wikipedia among websites
  Articles in certain newspapers
  A paper with many citations
  Many diggs, Y!buzzes or del.icio.us marks
  Pagerank

Modeling authority

  Assign to each document a query-independent
quality score in [0,1] denoted g(d)

  Thus, a quantity like the number of citations is
scaled into [0,1]

  Google PageRank

Net score

  We want a total score that combines cosine
relevance and authority
  net-score(q,d) = g(d) + cosine(q,d)
  Can use some other linear combination than an

equal weighting
  Indeed, any function of the two “signals” of user

happiness
  Now we seek the top K docs by net score

  Doing this exactly, is similar to incorporating
document length normalization

Top K by net score – fast methods
  Order all postings by g(d)
  Is this ok? Does it change our merge/traversal

algorithms?
  Key: this is still a common ordering for all postings

Brutus

Caesar

Antony 1 2

3 1

3 2

2

g(1) = 0.5, g(2) = .25, g(3) = 1

Why order postings by g(d)?

  Under g(d)-ordering, top-scoring docs likely to
appear early in postings traversal

  In time-bound applications (say, we have to
return whatever search results we can in 50 ms),
this allows us to stop postings traversal early

Brutus

Caesar

Antony 1 2

3 1

3 2

2

g(1) = 0.5, g(2) = .25, g(3) = 1

Champion lists in g(d)-ordering

  We can still use the notion of champion lists…

  Combine champion lists with g(d)-ordering
  Maintain for each term a champion list of the r

docs with highest g(d) + tf-idftd

  Seek top-K results from only the docs in these
champion lists

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Impact-ordered postings

  Why do we need a common ordering of the postings list?
  Allows us to easily traverse the postings list and check for

intersection

  Is that required for our tf-idf traversal algorithm?

  float scores[N] = 0
  for each query term t

  for each entry in t’s postings list: docID, wt,d
  scores[docID] += wt,d

  return top k components of scores

Impact-ordered postings

  The ordering no long plays a role
  Our algorithm for computing document scores

“accumulates” scores for each document

  Idea: sort each postings list by wt,d
  Only compute scores for docs for which wt,d is

high enough
  Given this ordering, how might we construct A

when processing a query?

Impact-ordering: early termination

  When traversing a postings list, stop early after
either
  a fixed number of r docs
  wt,d drops below some threshold

  Take the union of the resulting sets of docs
  One from the postings of each query term

  Compute only the scores for docs in this union

Impact-ordering: idf-ordered terms

  When considering the postings of query terms
  Look at them in order of decreasing idf

  High idf terms likely to contribute most to score
  As we update score contribution from each query

term
  Stop if doc scores relatively unchanged

  Can apply to cosine or other net scores

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Cluster pruning: preprocessing

  Pick √N docs, call these leaders
  For every other doc, pre-compute

nearest leader
  Docs attached to a leader are called

followers
  Likely: each leader has ~ √N

followers

 Cluster pruning: query processing

  Process a query as follows:
  Given query Q, find its nearest leader L
  Seek K nearest docs from among L’s

followers

Visualization

Query

Leader Follower

Cluster pruning variants
  Have each follower attached to b1 (e.g. 2) nearest leaders
  From query, find b2 (e.g. 3) nearest leaders and their followers

Query

Leader Follower

Can Microsoft's Bing, or Anyone,
Seriously Challenge Google?

  Will it ever be possible to dethrone Google as the
leader in web search?

  What would a search engine need to improve
upon the model Google offers?

  Is Bing a serious threat to Google’s dominance?

