
Faster TF-IDF

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt

Administrative

  Assignment 1
  Assignment 2

  Look at the assignment by Wed!
  New turnin procedure

  Class participation

Stoplist and dictionary size

Recap: Queries as vectors

  Represent the queries as vectors
  Represent the documents as vectors

  proximity = similarity of vectors

  What do the entries in the vector represent in the
tf-idf scheme?

Recap: tf-idf weighting

  The tf-idf weight of a term is the product of its tf weight
and its idf weight.

  For each document, there is one entry for every term
in the vocabulary

  Each entry in that vector is the tf-idf weight above

  How do we calculate the similarity?
€

w
t ,d

= tft,d × log(N /dft)

Recap: cosine(query,document)
Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Calculating cosine similarity

  Traverse entries calculating
the product

  Accumulate the vector lengths
and divide at the end

  How can we do it faster if we
have a sparse representation?

€

cos( q ,

d) =

qidii=1

V
∑

qi
2

i=1

V
∑ di

2
i=1

V
∑

tf-idf entries

Calculating cosine tf-idf from index

  What should we store in the
index?

  How do we construct the
index?

  How do we calculate the
document ranking?

w1 

…

w2 

w3 

index

€

cos( q ,

d) =

 q
 q

•


d

d

=
qidii=1

V
∑

qi
2

i=1

V
∑ di

2
i=1

V
∑€

w
t ,d

= tft,d × log(N /dft)

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Index construction:
collect documentIDs

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
sort dictionary

sort based on terms

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
create postings list

create postings lists
from identical entries

word 1 

word 2 

word n 

…

€

w
t ,d

= tft,d × log(N /dft)

Do we have all the information we need?

Obtaining tf-idf weights

  Store the tf initially in the index
  In addition, store the number of documents the

term occurs in in the index

  How do we get the idfs?
  We can either compute these on the fly using the

number of documents in each term
  We can make another pass through the index and

update the weights for each entry
  Pros and cons of each approach?

Do we have everything we need?

  Still need the document lengths
  Store these in a separate data structure
  Make another pass through the data and update

the weights
  Benefits/drawbacks?

€

cos( q ,

d) =

 q
 q

•


d

d

=
qidii=1

V
∑

qi
2

i=1

V
∑ di

2
i=1

V
∑

Computing cosine scores

  Similar to the merge operation
  Accumulate scores for each document

  float scores[N] = 0
  for each query term t

  calculate wt,q
  for each entry in t’s postings list: docID, wt,d

  scores[docID] += wt,q * wt,d

  return top k components of scores

Efficiency

  What are the inefficiencies here?
  Only want the scores for the top k but are

calculating all the scores
  Sort to obtain top k?

  float scores[N] = 0
  for each query term t

  calculate wt,q
  for each entry in t’s postings list: docID, wt,d

  scores[docID] += wt,q * wt,d

  return top k components of scores

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Efficient cosine ranking

  What we’re doing in effect: solving the K-
nearest neighbor problem for a query vector

  In general, we do not know how to do this
efficiently for high-dimensional spaces

  Two simplifying assumptions
  Queries are short!
  Assume no weighting on query terms and that

each query term occurs only once
  Then for ranking, don’t need to normalize query

vector

Computing cosine scores

  Assume no weighting on query terms and that
each query term occurs only once

  float scores[N] = 0
  for each query term t

  for each entry in t’s postings list: docID, wt,d
  scores[docID] += wt,d

  return top k components of scores

Selecting top K

  We could sort the scores and then pick the top K
  What is the runtime of this approach?

  O(N log N)
  Can we do better?
  Use a heap (i.e. priority queue)

  Build a heap out of the scores
  Get the top K scores from the heap
  Running time?

  O(N + K log N)

  For N=1M, K=100, this is about 10% of the cost
of sorting

1

.9 .3

.8 .3

.1

.1

Inexact top K

  What if we don’t return the exactly the top K,
but a set close to the top K?
  User has a task and a query formulation
  Cosine is a proxy for matching this task/query
  If we get a list of K docs “close” to the top K by

cosine measure, should still be ok

Current approach

Documents

Score documents

Pick top K

Approximate approach

Documents

Select A candidates
 K < A << N

Pick top K in A

Score documents in A

Exact vs. approximate

  Depending on how A is selected and how large A
is, can get different results

  Can think of it as pruning the initial set of docs
  How might we pick A?

Exact

Approximate

Docs containing many query terms

  So far, we consider any document with at least
one query term in it

  For multi-term queries, only compute scores for
docs containing several of the query terms
  Say, at least 3 out of 4
  Imposes a “soft conjunction” on queries seen on

web search engines (early Google)
  Easy to implement in postings traversal

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Scores only computed for 8, 16 and 32.

High-idf query terms only

  For a query such as catcher in the rye
  Only accumulate scores from catcher and rye
  Intuition: in and the contribute little to the scores

and don’t alter rank-ordering much
  Benefit:

  Postings of low-idf terms have many docs → these
(many) docs get eliminated from A

  Can we calculate this efficiently from the index?

Champion lists
  Precompute for each dictionary term the r

docs of highest weight in the term’s postings
  Call this the champion list for a term
  (aka fancy list or top docs for a term)

  This must be done at index time

Brutus

Caesar 1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

Antony 3 4 8 16 32 64 128

Champion lists

  At query time, only compute scores for docs in the
champion list of some query term
  Pick the K top-scoring docs from amongst these

  Are we guaranteed to always get K documents?

Brutus

Caesar

Antony 8 16 128

8 32 128

1 16 128

High and low lists

  For each term, we maintain two postings lists
called high and low
  Think of high as the champion list

  When traversing postings on a query, only
traverse high lists first
  If we get more than K docs, select the top K and

stop
  Else proceed to get docs from the low lists

  A means for segmenting index into two tiers

Tiered indexes

  Break postings up into a hierarchy of lists
  Most important
  …
  Least important

  Inverted index thus broken up into tiers of
decreasing importance

  At query time use top tier unless it fails to yield K
docs
  If so drop to lower tiers

Example tiered index

Quick review

  Rather than selecting the best K scores from all
N documents
  Initially filter the documents to a smaller set
  Select the K best scores from this smaller set

  Methods for selecting this smaller set
  Documents with more than one query term
  Terms with high IDF
  Documents with the highest weights

Discussion

  How can Champion Lists be implemented in an
inverted index? How do we modify the data
structure?

Brutus

Caesar 1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

Antony 3 4 8 16 32 64 128

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Static quality scores

  We want top-ranking documents to be both
relevant and authoritative

  Relevance is being modeled by cosine scores
  Authority is typically a query-independent

property of a document
  What are some examples of authority signals?

  Wikipedia among websites
  Articles in certain newspapers
  A paper with many citations
  Many diggs, Y!buzzes or del.icio.us marks
  Pagerank

Modeling authority

  Assign to each document a query-independent
quality score in [0,1] denoted g(d)

  Thus, a quantity like the number of citations is
scaled into [0,1]

  Google PageRank

Net score

  We want a total score that combines cosine
relevance and authority
  net-score(q,d) = g(d) + cosine(q,d)
  Can use some other linear combination than an

equal weighting
  Indeed, any function of the two “signals” of user

happiness
  Now we seek the top K docs by net score

  Doing this exactly, is similar to incorporating
document length normalization

Top K by net score – fast methods
  Order all postings by g(d)
  Is this ok? Does it change our merge/traversal

algorithms?
  Key: this is still a common ordering for all postings

Brutus

Caesar

Antony 1 2

3 1

3 2

2

g(1) = 0.5, g(2) = .25, g(3) = 1

Why order postings by g(d)?

  Under g(d)-ordering, top-scoring docs likely to
appear early in postings traversal

  In time-bound applications (say, we have to
return whatever search results we can in 50 ms),
this allows us to stop postings traversal early

Brutus

Caesar

Antony 1 2

3 1

3 2

2

g(1) = 0.5, g(2) = .25, g(3) = 1

Champion lists in g(d)-ordering

  We can still use the notion of champion lists…

  Combine champion lists with g(d)-ordering
  Maintain for each term a champion list of the r

docs with highest g(d) + tf-idftd

  Seek top-K results from only the docs in these
champion lists

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Impact-ordered postings

  Why do we need a common ordering of the postings list?
  Allows us to easily traverse the postings list and check for

intersection

  Is that required for our tf-idf traversal algorithm?

  float scores[N] = 0
  for each query term t

  for each entry in t’s postings list: docID, wt,d
  scores[docID] += wt,d

  return top k components of scores

Impact-ordered postings

  The ordering no long plays a role
  Our algorithm for computing document scores

“accumulates” scores for each document

  Idea: sort each postings list by wt,d
  Only compute scores for docs for which wt,d is

high enough
  Given this ordering, how might we construct A

when processing a query?

Impact-ordering: early termination

  When traversing a postings list, stop early after
either
  a fixed number of r docs
  wt,d drops below some threshold

  Take the union of the resulting sets of docs
  One from the postings of each query term

  Compute only the scores for docs in this union

Impact-ordering: idf-ordered terms

  When considering the postings of query terms
  Look at them in order of decreasing idf

  High idf terms likely to contribute most to score
  As we update score contribution from each query

term
  Stop if doc scores relatively unchanged

  Can apply to cosine or other net scores

Outline

  Calculating tf-idf score
  Faster ranking
  Static quality scores
  Impact ordering
  Cluster pruning

Cluster pruning: preprocessing

  Pick √N docs, call these leaders
  For every other doc, pre-compute

nearest leader
  Docs attached to a leader are called

followers
  Likely: each leader has ~ √N

followers

 Cluster pruning: query processing

  Process a query as follows:
  Given query Q, find its nearest leader L
  Seek K nearest docs from among L’s

followers

Visualization

Query

Leader Follower

Cluster pruning variants
  Have each follower attached to b1 (e.g. 2) nearest leaders
  From query, find b2 (e.g. 3) nearest leaders and their followers

Query

Leader Follower

Can Microsoft's Bing, or Anyone,
Seriously Challenge Google?

  Will it ever be possible to dethrone Google as the
leader in web search?

  What would a search engine need to improve
upon the model Google offers?

  Is Bing a serious threat to Google’s dominance?

