Faster TF-IDF

David Kauchak

cs160

Fall 2009

adapted from:
http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt
Administrative

- Assignment 1
- Assignment 2
 - Look at the assignment by Wed!
 - New turnin procedure
- Class participation
Stoplist and dictionary size
Recap: Queries as vectors

- Represent the queries as vectors
- Represent the documents as vectors
- proximity = similarity of vectors
- What do the entries in the vector represent in the tf-idf scheme?
Recap: tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

 \[w_{t,d} = tf_{t,d} \times \log \left(\frac{N}{df_t} \right) \]

- For each document, there is one entry for every term in the vocabulary

- Each entry in that vector is the tf-idf weight above

- How do we calculate the similarity?
Recap: cosine(query, document)

\[\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\vec{q} \cdot \vec{d}}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}} = \sum_{i=1}^{V} q_i d_i \]

\(\cos(q, d) \) is the cosine similarity of \(q \) and \(d \) ... or, equivalently, the cosine of the angle between \(q \) and \(d \).
Outline

- Calculating tf-idf score
- Faster ranking
- Static quality scores
- Impact ordering
- Cluster pruning
Calculating cosine similarity

\[\cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}} \]

- Traverse entries calculating the product
- Accumulate the vector lengths and divide at the end
- How can we do it faster if we have a sparse representation?
Calculating cosine tf-idf from index

- What should we store in the index?
- How do we construct the index?
- How do we calculate the document ranking?

\[
w_{t,d} = tf_{t,d} \times \log(N/df_t)
\]

\[
\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{\|V\|} q_i^2 \sqrt{\sum_{i=1}^{\|V\|} d_i^2}}}
\]
I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me.

So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious.
Index construction: sort dictionary

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc #</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>i'</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>so</td>
<td>2</td>
</tr>
<tr>
<td>let</td>
<td>2</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>noble</td>
<td>2</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
</tr>
<tr>
<td>hath</td>
<td>2</td>
</tr>
<tr>
<td>told</td>
<td>2</td>
</tr>
<tr>
<td>you</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>ambitious</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambitious</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
</tr>
<tr>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>i'</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>let</td>
<td>2</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>noble</td>
<td>2</td>
</tr>
<tr>
<td>so</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>told</td>
<td>2</td>
</tr>
<tr>
<td>you</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
</tr>
</tbody>
</table>

sort based on terms
Index construction: create postings list

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambitious</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>i'</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>let</td>
<td>2</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>noble</td>
<td>2</td>
</tr>
<tr>
<td>so</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>told</td>
<td>2</td>
</tr>
<tr>
<td>you</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
</tr>
</tbody>
</table>

create postings lists from identical entries

\[w_{i,d} = tf_{i,d} \times \log(N / df_i) \]

Do we have all the information we need?
Obtaining tf-idf weights

- Store the tf initially in the index
- In addition, store the number of documents the term occurs in in the index

- How do we get the idfs?
 - We can either compute these on the fly using the number of documents in each term
 - We can make another pass through the index and update the weights for each entry

- Pros and cons of each approach?
Do we have everything we need?

- Still need the document lengths
 - Store these in a separate data structure
 - Make another pass through the data and update the weights
- Benefits/drawbacks?

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| \cdot |\vec{d}|} = \frac{\sum_{i=1}^{v} q_i d_i}{\sqrt{\sum_{i=1}^{v} q_i^2} \sqrt{\sum_{i=1}^{v} d_i^2}}$$
Computing cosine scores

- Similar to the merge operation
- Accumulate scores for each document

- float scores[N] = 0
- for each query term \(t \)
 - calculate \(w_{t,q} \)
 - for each entry in \(t \)'s postings list: \(docID, w_{t,d} \)
 - \(scores[docID] += w_{t,q} \times w_{t,d} \)
- return top \(k \) components of scores
Efficiency

- What are the inefficiencies here?
 - Only want the scores for the top k but are calculating all the scores
 - Sort to obtain top k?

- float $scores[N] = 0$
- for each query term t
 - calculate $w_{t,q}$
 - for each entry in t’s postings list: $docID$, $w_{t,d}$
 - $scores[docID] += w_{t,q} * w_{t,d}$
- return top k components of scores
Outline

- Calculating tf-idf score
- Faster ranking
- Static quality scores
- Impact ordering
- Cluster pruning
Efficient cosine ranking

- What we’re doing in effect: solving the K-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- Two simplifying assumptions
 - Queries are short!
 - Assume no weighting on query terms and that each query term occurs only once
 - Then for ranking, don’t need to normalize query vector
Computing cosine scores

- Assume no weighting on query terms and that each query term occurs only once

- float scores[N] = 0
- for each query term t
 - for each entry in t’s postings list: $docID$, $w_{t,d}$
 - $scores[docID] += w_{t,d}$
- return top k components of scores
Selecting top K

- We could sort the scores and then pick the top K
- What is the runtime of this approach?
 - $O(N \log N)$
- Can we do better?
- Use a heap (i.e. priority queue)
 - Build a heap out of the scores
 - Get the top K scores from the heap
 - Running time?
 - $O(N + K \log N)$
- For $N=1M$, $K=100$, this is about 10% of the cost of sorting
Inexact top K

- What if we don’t return the exactly the top K, but a set close to the top K?
 - User has a task and a query formulation
 - Cosine is a proxy for matching this task/query
 - If we get a list of K docs “close” to the top K by cosine measure, should still be ok
Current approach

Documents

Score documents

Pick top K
Approximate approach

Select A candidates
K < A << N

Score documents in A

Pick top K in A
Exact vs. approximate

- Depending on how A is selected and how large A is, can get different results
- Can think of it as **pruning** the initial set of docs
- How might we pick A?
So far, we consider any document with at least one query term in it.

For multi-term queries, only compute scores for docs containing several of the query terms:
- Say, at least 3 out of 4
- Imposes a “soft conjunction” on queries seen on web search engines (early Google)

Easy to implement in postings traversal.
Scores only computed for 8, 16 and 32.
High-idf query terms only

- For a query such as *catcher in the rye*
- Only accumulate scores from *catcher* and *rye*
- Intuition: *in* and *the* contribute little to the scores and don’t alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs \rightarrow these (many) docs get eliminated from A

- Can we calculate this efficiently from the index?
Champion lists

- **Precompute** for each dictionary term the \(r \) docs of highest weight in the term’s postings
 - Call this the champion list for a term
 - (aka fancy list or top docs for a term)
- This must be done at index time
Champion lists

- At query time, only compute scores for docs in the champion list of some query term
 - Pick the K top-scoring docs from amongst these

- Are we guaranteed to always get K documents?
High and low lists

- For each term, we maintain two postings lists called *high* and *low*
 - Think of *high* as the champion list
- When traversing postings on a query, only traverse *high* lists first
 - If we get more than \(K\) docs, select the top \(K\) and stop
 - Else proceed to get docs from the *low* lists
- A means for segmenting index into two tiers
Tiered indexes

- Break postings up into a hierarchy of lists
 - Most important
 - ...
 - Least important
- Inverted index thus broken up into tiers of decreasing importance
- At query time use top tier unless it fails to yield K docs
 - If so drop to lower tiers
Example tiered index

Tier 1
- auto → Doc2
- best
- car → Doc1 → Doc3
- insurance → Doc2 → Doc3

Tier 2
- auto
- best → Doc1 → Doc3
- car
- insurance

Tier 3
- auto → Doc1
- best
- car → Doc2
- insurance
Quick review

- Rather than selecting the best K scores from all N documents
 - Initially filter the documents to a smaller set
 - Select the K best scores from this smaller set

- Methods for selecting this smaller set
 - Documents with more than one query term
 - Terms with high IDF
 - Documents with the highest weights
How can Champion Lists be implemented in an inverted index? How do we modify the data structure?

- Antony
 - 3 4 8 16 32 64 128
- Brutus
 - 2 4 8 16 32 64 128
- Caesar
 - 1 2 3 5 8 13 21 34
Outline

- Calculating tf-idf score
- Faster ranking
- Static quality scores
- Impact ordering
- Cluster pruning
Static quality scores

- We want top-ranking documents to be both *relevant* and *authoritative*
- *Relevance* is being modeled by cosine scores
- *Authority* is typically a query-independent property of a document
- What are some examples of authority signals?
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, Y!buzzes or del.icio.us marks
 - Pagerank
Modeling authority

- Assign to each document a *query-independent* quality score in [0, 1] denoted *g(d)*
- Thus, a quantity like the number of citations is scaled into [0, 1]

- Google PageRank
Net score

- We want a total score that combines cosine relevance and authority
 - \(\text{net-score}(q,d) = g(d) + \text{cosine}(q,d) \)
 - Can use some other linear combination than an equal weighting
 - Indeed, any function of the two “signals” of user happiness
- Now we seek the top \(K \) docs by \text{net score}

- Doing this exactly, is similar to incorporating document length normalization
Top K by net score – fast methods

- Order all postings by $g(d)$
- Is this ok? Does it change our merge/traversal algorithms?
 - Key: this is still a common ordering for all postings

$$
g(1) = 0.5, \quad g(2) = 0.25, \quad g(3) = 1$$
Why order postings by $g(d)$?

- Under $g(d)$-ordering, top-scoring docs likely to appear early in postings traversal.
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early.

Antony	1 → 2
Brutus	3 → 1 → 2
Caesar	3 → 2

$g(1) = 0.5, \ g(2) = 0.25, \ g(3) = 1$
Champion lists in $g(d)$-ordering

- We can still use the notion of champion lists…
- Combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_{td}$
- Seek top-K results from only the docs in these champion lists
Outline

- Calculating tf-idf score
- Faster ranking
- Static quality scores
- Impact ordering
- Cluster pruning
Impact-ordered postings

- Why do we need a common ordering of the postings list?
 - Allows us to easily traverse the postings list and check for intersection
- Is that required for our tf-idf traversal algorithm?

- float scores[N] = 0
- for each query term t
 - for each entry in t’s postings list: docID, \(w_{t,d} \)
 - \(scores[docID] += w_{t,d} \)
- return top \(k \) components of scores
Impact-ordered postings

- The ordering no long plays a role
- Our algorithm for computing document scores “accumulates” scores for each document

- Idea: sort each postings list by $w_{t,d}$
- Only compute scores for docs for which $w_{t,d}$ is high enough
- Given this ordering, how might we construct A when processing a query?
Impact-ordering: early termination

- When traversing a postings list, stop early after either
 - a fixed number of r docs
 - $w_{t,d}$ drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union
Impact-ordering: idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or other net scores
Outline

- Calculating tf-idf score
- Faster ranking
- Static quality scores
- Impact ordering
- Cluster pruning
Cluster pruning: preprocessing

- Pick \sqrt{N} docs, call these leaders
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader are called followers
 - Likely: each leader has $\sim \sqrt{N}$ followers
Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest *leader* L
 - Seek K nearest docs from among L’s followers
Visualization

Leader

Follower

Query
Cluster pruning variants

- Have each follower attached to b_1 (e.g. 2) nearest leaders
- From query, find b_2 (e.g. 3) nearest leaders and their followers
Can Microsoft's Bing, or Anyone, Seriously Challenge Google?

- Will it ever be possible to dethrone Google as the leader in web search?
- What would a search engine need to improve upon the model Google offers?
- Is Bing a serious threat to Google’s dominance?