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Administrative 

  Homework 3 available soon 
  Assignment 2 available soon 
  Popular media article 



Ranked retrieval 
  Thus far, our queries have all been Boolean 

  Documents either match or don’t 
  Good for expert users with precise understanding 

of their needs and the collection 
  Also good for applications: Applications can 

easily consume 1000s of results 
  Not good for the majority of users 
  Most users incapable of writing Boolean queries 

(or they are, but they think it’s too much work) 
  More importantly: most users don’t want to wade 

through 1000s of results 



Problem with Boolean search: 
feast or famine 

  Boolean queries often result in either too few (=0) 
or too many (1000s) results. 

  Query 1: “standard user dlink 650” → 200,000 
hits 

  Query 2: “standard user dlink 650 no card found”: 
0 hits 

  It takes skill to come up with a query that 
produces a manageable number of hits 

  With a ranked list of documents it does not matter 
how large the retrieved set is 



Scoring as the basis of ranked 
retrieval 

  We wish to return in order the documents most 
likely to be useful to the searcher 

  Assign a score that measures how well document 
and query “match” 



Query-document matching scores 

  We need a way of assigning a score to a query/
document pair 

  Besides whether or not a query (or query word) 
occurs in a document, what other indicators 
might be useful? 
  How many times the word occurs in the document 
  Where the word occurs 
  How “important” is the word – for example, a vs. 

motorcycle 



Recall: Binary term-document 
incidence matrix 

Each document is represented by a binary vector ∈ {0,1}|V| 



Term-document count matrices 

  Consider the number of occurrences of a term in a 
document:  
  Each document is a count vector in ℕv: a column below  

What information is lost with this representation? 



Bag of words representation 

  Represent a document by the occurrence counts 
of each word 

  Ordering of words is lost 
  John is quicker than Mary and Mary is quicker 

than John have the same vectors 



Boolean queries: another view 

query 

document 

For the boolean representation, we can view a  
query/document as a set of words 



Boolean queries: another view 

query 

document 

We want to return those documents 
where there is an overlap, i.e. 
intersection between the two sets 



Bag of words 

query 

document 

What is the notion of “intersection” for 
the bag or words model? 



Bag of words 

query 

document 

Want to take into account term frequency 



Some things to be careful of… 

query 

document 

query 

document 

Say I take the document and simply append 
it to itself. What happens to the overlap? 



Some things to be careful of… 

query 

document 

query 

document 

What is the issue? 

Need some notion of the length of a document 



Some things to be careful of… 

query query 

What about a document that contains only 
frequent words, e.g. the? 

document the the the  
the the … 



Some things to be careful of… 

query query 

Need some notion of the importance of words 

document the the the  
the the … 



Documents as vectors 

  We have a |V|-dimensional 
vector space 

  Terms are axes of the space 
  Documents are points or 

vectors in this space 
  Very high-dimensional: 

hundreds of millions of 
dimensions when you apply 
this to a web search engine 

  This is a very sparse vector - 
most entries are zero 



Queries as vectors 

  Key idea 1: Do the same for queries: represent 
them as vectors in the space 

  Key idea 2: Rank documents according to their 
proximity to the query in this space 

|V| dimensional space 

How should 
we rank 
documents? 



Formalizing vector space proximity 

  We have points in a |V| dimensional space 
  How can we measure the proximity of documents 

in this space? 

  First cut: distance between two points 
  Euclidean distance? 



Why distance is a bad idea 

Which document is 
closer using 
Euclidian distance? 

Which do you think 
should be closer? 



Issues with Euclidian distance 

The Euclidean 
distance between q 
and d2 is large even 
though the 
distribution of terms 
in the query q and 
the distribution of 
terms in the 
document d2 are 
very similar. 



Use angle instead of distance 

  Thought experiment: take a document d and 
append it to itself. Call this document d′ 

  “Semantically” d and d′ have the same content 
  The Euclidean distance between the two 

documents can be quite large 
  The angle between the two documents is 0, 

corresponding to maximal similarity 

  Any other ideas? 
  Rank documents according to angle with query 



From angles to cosines 

  Cosine is a monotonically decreasing function for the 
interval [0o, 180o] 

  The following two notions are equivalent. 
  Rank documents in decreasing order of the angle between 

query and document 
  Rank documents in increasing order  of 

cosine(query,document) 



cosine(query,document) 

How do we calculate the 
cosine between two vectors? 



cosine(query,document) 

  

€ 

cos( q ,
 
d ) =
 q •
 
d = qidii=1

V
∑

Dot product 

cos(q,d) is the cosine similarity of q and d … or, 
equivalently, the cosine of the angle between q and d. 



Some things to be careful of… 

query 

document 

query 

document 

Need some notion of the length of a document 



Length normalization 

  A vector can be (length-) normalized by dividing 
each of its components by its length – for this we 
use the L2 norm: 

  Dividing a vector by its L2 norm makes it a unit 
(length) vector 

  What is a “unit vector” or “unit length vector”? 
  Effect on the two documents d and d′ (d 

appended to itself) from earlier slide: they have 
identical vectors after length-normalization. 



cosine(query,document) 
Dot product Unit vectors 

cos(q,d) is the cosine similarity of q and d … or, 
equivalently, the cosine of the angle between q and d. 



Cosine similarity with 3 documents 

term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

How similar are 
the novels: 
SaS: Sense and 
Sensibility 
PaP: Pride and 
Prejudice, and 
WH: Wuthering 
Heights? 

Term frequencies (counts) 



Some things to be careful of… 

query query 

Need some notion of the importance of words 

document the the the  
the the … 



Term importance 

  Rare terms are more informative than frequent terms 
  Recall stop words 

  Consider a term in the query that is rare in the 
collection (e.g., arachnocentric) 

  A document containing this term is very likely to be 
relevant to the query arachnocentric 

  → We want a high weight for rare terms like 
arachnocentric 

  Ideas? 



Document frequency 

  We will use document frequency (df) to capture 
this in the score 

  Terms that occur in many documents are 
weighted less, since overlapping with these terms 
is very likely 
  In the extreme case, take a word like the that 

occurs in EVERY document 

  Terms that occur in only a few documents are 
weighted more 



Collection vs. Document frequency 
  The collection frequency of t is the number of 

occurrences of t in the collection, counting 
multiple occurrences 

  Example: 

  Which word is a better search term (and should 
get a higher weight)? 

Word Collection frequency Document frequency 

insurance 10440 3997 

try 10422 8760 



Document frequency 

  How does “importance” or “informativeness” 
relate to document frequency? 

Word Collection frequency Document frequency 

insurance 10440 3997 

try 10422 8760 



Inverse document frequency 

  dft is the document frequency of t: the number of 
documents that contain t 
  df is a measure of the informativeness of t 

  We define the idf (inverse document frequency) 
of t by 

  We use log N/dft instead of N/dft to “dampen” the 
effect of idf 

€ 

idft  =  log N/dft



idf example, suppose N= 1 million 
term dft idft 

calpurnia 1 6 

animal 100 4 

sunday 1,000 3 

fly 10,000 2 

under 100,000 1 

the 1,000,000 0 

There is one idf value for each term t in a collection. 



idf example, suppose N= 1 million 
term dft idft 

calpurnia 1 

animal 100 

sunday 1,000 

fly 10,000 

under 100,000 

the 1,000,000 

What if we didn’t use the log to dampen the weighting? 



idf example, suppose N= 1 million 
term dft idft 

calpurnia 1 1,000,000 

animal 100 10,000 

sunday 1,000 1,000 

fly 10,000 100 

under 100,000 10 

the 1,000,000 1 

What if we didn’t use the log to dampen the weighting? 



Putting it all together 

  We have a notion of term frequency overlap 
  We have a notion of term importance 
  We have a similarity measure (cosine similarity) 

  Can we put all of  these together? 
  Define a weighting for each term 
  The tf-idf weight of a term is the product of its tf weight 

and its idf weight 

€ 

w
t ,d

= tft,d × logN /dft



tf-idf weighting 

  Best known weighting scheme in information 
retrieval 

  Increases with the number of occurrences within 
a document 

  Increases with the rarity of the term in the 
collection 

  Works surprisingly well! 
  Works in many other application domains 

€ 

w
t ,d

= tft,d × logN /dft



Binary → count → weight matrix 

Each document is now represented by a real-valued 
vector of tf-idf weights ∈ R|V| 

We then calculate the similarity using cosine 
similarity with these vectors 



Burstiness 

  Take a rare word like arachnocentric 

  What is the likelihood that arachnocentric occurs 
in a document? 

  Given that you’ve seen it once, what is the 
likelihood that you’ll see it again? 

  Does this have any impact on our model? 



Log-frequency weighting 

  Want to reduce the effect of multiple occurrences 
of a term 

  A document about “Clinton” will have “Clinton” 
occuring many times 

  Rather than use the frequency, us the log of the 
frequency 

  0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc. 

€ 

wt,d  =  
1 +  log tft,d , if tft,d  >  0

0,  otherwise
 
 
 



Cosine similarity with 3 documents 

term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

How similar are 
the novels: 
SaS: Sense and 
Sensibility 
PaP: Pride and 
Prejudice, and 
WH: Wuthering 
Heights? 

Term frequencies (counts) 



3 documents example contd. 
Log frequency weighting 

term SaS PaP WH 
affection 3.06 2.76 2.30 
jealous 2.00 1.85 2.04 
gossip 1.30 0 1.78 
wuthering 0 0 2.58 

After normalization 

term SaS PaP WH 
affection 0.789 0.832 0.524 
jealous 0.515 0.555 0.465 
gossip 0.335 0 0.405 
wuthering 0 0 0.588 

cos(SaS,PaP) ≈ 
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 
≈ 0.94 
cos(SaS,WH) ≈ 0.79 
cos(PaP,WH) ≈ 0.69 



tf-idf weighting has many variants 

Columns headed ‘n’ are acronyms for weight schemes. 

Why is the base of the log in idf immaterial? 



Weighting may differ in queries vs 
documents 

  Many search engines allow for different 
weightings for queries vs documents 

  To denote the combination in use in an engine, 
we use the notation qqq.ddd with the acronyms 
from the previous table 

  Example: ltn.ltc means: 
  Query: logarithmic tf (l in leftmost column), idf (t 

in second column), no normalization … 
  Document logarithmic tf, no idf and cosine 

normalization 
Is this a bad idea? 



tf-idf example: ltn.lnc 
(log idf none . log none cosine) 

Term Query Document Prod 
tf-raw tf-wt df idf wt tf-raw tf-wt n’lized 

auto 0 0 5000 2.3  0 1 
best 1 1 50000 1.3 1.3 0 
car 1  1 10000 2.0 2.0 1 
insurance 1 1 1000 3.0 3.0 2 

Document: car insurance auto insurance 
Query: best car insurance 

Doc length = 



tf-idf example: ltn.lnc 

Term Query Document Prod 
tf-raw tf-wt df idf wt tf-raw tf-wt n’lized 

auto 0 0 5000 2.3  0 1 1 0.52 0 
best 1 1 50000 1.3 1.3 0 0 0 0 
car 1  1 10000 2.0 2.0 1 1 0.52 1.04 
insurance 1 1 1000 3.0 3.0 2 1.3 0.677 2.04 

Document: car insurance auto insurance 
Query: best car insurance 

Score = 0+0+1.04+2.04 = 3.08 

Doc length = 

€ 

12 + 02 +12 +1.32 ≈1.92



Summary – vector space ranking 

  Represent the query as a weighted tf-idf vector 
  Represent each document as a weighted tf-idf vector 
  Compute the cosine similarity score for the query 

vector and each document vector 
  Rank documents with respect to the query by score 
  Return the top K (e.g., K = 10) to the user 


