
TF-IDF

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt

Administrative

  Homework 3 available soon
  Assignment 2 available soon
  Popular media article

Ranked retrieval
  Thus far, our queries have all been Boolean

  Documents either match or don’t
  Good for expert users with precise understanding

of their needs and the collection
  Also good for applications: Applications can

easily consume 1000s of results
  Not good for the majority of users
  Most users incapable of writing Boolean queries

(or they are, but they think it’s too much work)
  More importantly: most users don’t want to wade

through 1000s of results

Problem with Boolean search:
feast or famine

  Boolean queries often result in either too few (=0)
or too many (1000s) results.

  Query 1: “standard user dlink 650” → 200,000
hits

  Query 2: “standard user dlink 650 no card found”:
0 hits

  It takes skill to come up with a query that
produces a manageable number of hits

  With a ranked list of documents it does not matter
how large the retrieved set is

Scoring as the basis of ranked
retrieval

  We wish to return in order the documents most
likely to be useful to the searcher

  Assign a score that measures how well document
and query “match”

Query-document matching scores

  We need a way of assigning a score to a query/
document pair

  Besides whether or not a query (or query word)
occurs in a document, what other indicators
might be useful?
  How many times the word occurs in the document
  Where the word occurs
  How “important” is the word – for example, a vs.

motorcycle

Recall: Binary term-document
incidence matrix

Each document is represented by a binary vector ∈ {0,1}|V|

Term-document count matrices

  Consider the number of occurrences of a term in a
document:
  Each document is a count vector in ℕv: a column below

What information is lost with this representation?

Bag of words representation

  Represent a document by the occurrence counts
of each word

  Ordering of words is lost
  John is quicker than Mary and Mary is quicker

than John have the same vectors

Boolean queries: another view

query

document

For the boolean representation, we can view a
query/document as a set of words

Boolean queries: another view

query

document

We want to return those documents
where there is an overlap, i.e.
intersection between the two sets

Bag of words

query

document

What is the notion of “intersection” for
the bag or words model?

Bag of words

query

document

Want to take into account term frequency

Some things to be careful of…

query

document

query

document

Say I take the document and simply append
it to itself. What happens to the overlap?

Some things to be careful of…

query

document

query

document

What is the issue?

Need some notion of the length of a document

Some things to be careful of…

query query

What about a document that contains only
frequent words, e.g. the?

document the the the
the the …

Some things to be careful of…

query query

Need some notion of the importance of words

document the the the
the the …

Documents as vectors

  We have a |V|-dimensional
vector space

  Terms are axes of the space
  Documents are points or

vectors in this space
  Very high-dimensional:

hundreds of millions of
dimensions when you apply
this to a web search engine

  This is a very sparse vector -
most entries are zero

Queries as vectors

  Key idea 1: Do the same for queries: represent
them as vectors in the space

  Key idea 2: Rank documents according to their
proximity to the query in this space

|V| dimensional space

How should
we rank
documents?

Formalizing vector space proximity

  We have points in a |V| dimensional space
  How can we measure the proximity of documents

in this space?

  First cut: distance between two points
  Euclidean distance?

Why distance is a bad idea

Which document is
closer using
Euclidian distance?

Which do you think
should be closer?

Issues with Euclidian distance

The Euclidean
distance between q
and d2 is large even
though the
distribution of terms
in the query q and
the distribution of
terms in the
document d2 are
very similar.

Use angle instead of distance

  Thought experiment: take a document d and
append it to itself. Call this document d′

  “Semantically” d and d′ have the same content
  The Euclidean distance between the two

documents can be quite large
  The angle between the two documents is 0,

corresponding to maximal similarity

  Any other ideas?
  Rank documents according to angle with query

From angles to cosines

  Cosine is a monotonically decreasing function for the
interval [0o, 180o]

  The following two notions are equivalent.
  Rank documents in decreasing order of the angle between

query and document
  Rank documents in increasing order of

cosine(query,document)

cosine(query,document)

How do we calculate the
cosine between two vectors?

cosine(query,document)

€

cos( q ,

d) =
 q •

d = qidii=1

V
∑

Dot product

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Some things to be careful of…

query

document

query

document

Need some notion of the length of a document

Length normalization

  A vector can be (length-) normalized by dividing
each of its components by its length – for this we
use the L2 norm:

  Dividing a vector by its L2 norm makes it a unit
(length) vector

  What is a “unit vector” or “unit length vector”?
  Effect on the two documents d and d′ (d

appended to itself) from earlier slide: they have
identical vectors after length-normalization.

cosine(query,document)
Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Cosine similarity with 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

How similar are
the novels:
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Some things to be careful of…

query query

Need some notion of the importance of words

document the the the
the the …

Term importance

  Rare terms are more informative than frequent terms
  Recall stop words

  Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

  A document containing this term is very likely to be
relevant to the query arachnocentric

  → We want a high weight for rare terms like
arachnocentric

  Ideas?

Document frequency

  We will use document frequency (df) to capture
this in the score

  Terms that occur in many documents are
weighted less, since overlapping with these terms
is very likely
  In the extreme case, take a word like the that

occurs in EVERY document

  Terms that occur in only a few documents are
weighted more

Collection vs. Document frequency
  The collection frequency of t is the number of

occurrences of t in the collection, counting
multiple occurrences

  Example:

  Which word is a better search term (and should
get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Document frequency

  How does “importance” or “informativeness”
relate to document frequency?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Inverse document frequency

  dft is the document frequency of t: the number of
documents that contain t
  df is a measure of the informativeness of t

  We define the idf (inverse document frequency)
of t by

  We use log N/dft instead of N/dft to “dampen” the
effect of idf

€

idft = log N/dft

idf example, suppose N= 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

idf example, suppose N= 1 million
term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

What if we didn’t use the log to dampen the weighting?

idf example, suppose N= 1 million
term dft idft

calpurnia 1 1,000,000

animal 100 10,000

sunday 1,000 1,000

fly 10,000 100

under 100,000 10

the 1,000,000 1

What if we didn’t use the log to dampen the weighting?

Putting it all together

  We have a notion of term frequency overlap
  We have a notion of term importance
  We have a similarity measure (cosine similarity)

  Can we put all of these together?
  Define a weighting for each term
  The tf-idf weight of a term is the product of its tf weight

and its idf weight

€

w
t ,d

= tft,d × logN /dft

tf-idf weighting

  Best known weighting scheme in information
retrieval

  Increases with the number of occurrences within
a document

  Increases with the rarity of the term in the
collection

  Works surprisingly well!
  Works in many other application domains

€

w
t ,d

= tft,d × logN /dft

Binary → count → weight matrix

Each document is now represented by a real-valued
vector of tf-idf weights ∈ R|V|

We then calculate the similarity using cosine
similarity with these vectors

Burstiness

  Take a rare word like arachnocentric

  What is the likelihood that arachnocentric occurs
in a document?

  Given that you’ve seen it once, what is the
likelihood that you’ll see it again?

  Does this have any impact on our model?

Log-frequency weighting

  Want to reduce the effect of multiple occurrences
of a term

  A document about “Clinton” will have “Clinton”
occuring many times

  Rather than use the frequency, us the log of the
frequency

  0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

€

wt,d =
1 + log tft,d , if tft,d > 0

0, otherwise




Cosine similarity with 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

How similar are
the novels:
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

3 documents example contd.
Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs
documents

  Many search engines allow for different
weightings for queries vs documents

  To denote the combination in use in an engine,
we use the notation qqq.ddd with the acronyms
from the previous table

  Example: ltn.ltc means:
  Query: logarithmic tf (l in leftmost column), idf (t

in second column), no normalization …
  Document logarithmic tf, no idf and cosine

normalization
Is this a bad idea?

tf-idf example: ltn.lnc
(log idf none . log none cosine)

Term Query Document Prod
tf-raw tf-wt df idf wt tf-raw tf-wt n’lized

auto 0 0 5000 2.3 0 1
best 1 1 50000 1.3 1.3 0
car 1 1 10000 2.0 2.0 1
insurance 1 1 1000 3.0 3.0 2

Document: car insurance auto insurance
Query: best car insurance

Doc length =

tf-idf example: ltn.lnc

Term Query Document Prod
tf-raw tf-wt df idf wt tf-raw tf-wt n’lized

auto 0 0 5000 2.3 0 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 0.677 2.04

Document: car insurance auto insurance
Query: best car insurance

Score = 0+0+1.04+2.04 = 3.08

Doc length =

€

12 + 02 +12 +1.32 ≈1.92

Summary – vector space ranking

  Represent the query as a weighted tf-idf vector
  Represent each document as a weighted tf-idf vector
  Compute the cosine similarity score for the query

vector and each document vector
  Rank documents with respect to the query by score
  Return the top K (e.g., K = 10) to the user

