
Index Compression

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture5-indexcompression.ppt

Administrative

  Homework 2
  Assignment 1
  Assignment 2

  Pair programming?

RCV1 token normalization

size of word types (terms)

dictionary

Size
(K)

∆% cumul
%

Unfiltered 484
No numbers 474 -2 -2
Case folding 392 -17 -19
30 stopwords 391 -0 -19
150 stopwords 391 -0 -19
stemming 322 -17 -33

TDT token normalization
normalization terms % change
none 120K -

number folding 117K 3%

lowercasing 100K 17%

stemming 95K 25%

stoplist 120K 0%

number & lower & stoplist 97K 20%

all 78K 35%

What normalization technique(s) should we use?

Index parameters vs. what we index
size of word types (terms) non-positional

postings
positional postings

dictionary non-positional index positional index

Size
(K)

∆% cumul
%

Size (K) ∆
%

cumul
%

Size (K) ∆
%

cumul
%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Index parameters vs. what we index
size of word types (terms) non-positional

postings
positional postings

dictionary non-positional index positional index

Size
(K)

∆% cumul
%

Size (K) ∆
%

cumul
%

Size (K) ∆
%

cumul
%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Index parameters vs. what we index
size of word types (terms) non-positional

postings
positional postings

dictionary non-positional index positional index

Size
(K)

∆% cumul
%

Size (K) ∆
%

cumul
%

Size (K) ∆
%

cumul
%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Corpora statistics

statistic TDT Reuters RCV1
documents 16K 800K
avg. # of tokens
per doc

400 200

terms 100K 400K
non-positional
postings

? 100M

How does the vocabulary size grow
with the size of the corpus?

number of documents

vo
ca

b
u
la

ry
 s

iz
e

How does the vocabulary size grow
with the size of the corpus?

log of the number of documents

lo
g
 o

f
th

e
vo

ca
b
u
la

ry
 s

iz
e

Heaps’ law

  Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5.
  Does this explain the plot we saw before?

  What does this say about the vocabulary size as we
increase the number of documents?
  there are almost always new words to be seen: increasing

the number of documents increases the vocabulary size
  to get a linear increase in vocab size, need to add

exponential number of documents

Vocab size = k (tokens)b

M = k Tb

log M= log k + b log(T)

How does the vocabulary size grow
with the size of the corpus?

log of the number of documents

lo
g
 o

f
th

e
vo

ca
b
u
la

ry
 s

iz
e log10M = 0.49 log10T +

1.64 is the best least
squares fit.

M = 101.64T0.49

k = 101.64 ≈ 44
b = 0.49.

Discussion

  How do token normalization techniques
and similar efforts like spelling
correction interact with Heaps’ law?

Heaps’ law and compression

  Today, we’re talking about index compression,
i.e. reducing the memory requirement for storing
the index

  What implications does Heaps’ law have for
compression?
  Dictionary sizes will continue to increase
  Dictionaries can be very large

How does a word’s frequency relate to
it’s frequency rank?

word’s frequency rank

w
o
rd

 f
re

q
u
en

cy

How does a word’s frequency relate to
it’s frequency rank?

log of the frequency rank

lo
g
 o

f
th

e
fr

eq
u
en

cy

Zipf’s law

  In natural language, there are a few very frequent
terms and very many very rare terms

  Zipf’s law: The ith most frequent term has frequency
proportional to 1/i

  where c is a constant

frequencyi ∝ c/i

log(frequencyi) ∝ log c – log i

Consequences of Zipf’s law

  If the most frequent term (the) occurs cf1
times, how often do the 2nd and 3rd most frequent
occur?
  then the second most frequent term (of) occurs

cf1/2 times
  the third most frequent term (and) occurs cf1/3

times …
  If we’re counting the number of words in a given

frequency range, lowering the frequency band
linearly results in an exponential increase in the
number of words

Zipf’s law and compression

  What implications does Zipf’s law have for
compression?

word’s frequency rank

w
o
rd

 f
re

q
u
en

cy

Some terms will
occur very frequently
in positional postings
lists

Dealing with these
well can drastically
reduce the index size

Index compression

  Compression techniques attempt to decrease the
space required to store an index

  What other benefits does compression have?
  Keep more stuff in memory (increases speed)
  Increase data transfer from disk to memory

  [read compressed data and decompress] is faster than
[read uncompressed data]

  What does this assume?
  Decompression algorithms are fast
  True of the decompression algorithms we use

Inverted index

word 1 

word 2 

word n 

…
What do we need to store?

How are we storing it?

Compression in inverted indexes

  First, we will consider space for dictionary
  Make it small enough to keep in main memory

  Then the postings
  Reduce disk space needed, decrease time to read

from disk
  Large search engines keep a significant part of

postings in memory

Lossless vs. lossy compression

  What is the difference between lossy and lossless
compression techniques?

  Lossless compression: All information is preserved
  Lossy compression: Discard some information, but

attempt to keep information that is relevant
  Several of the preprocessing steps can be viewed as lossy

compression: case folding, stop words, stemming, number
elimination.

  Prune postings entries that are unlikely to turn up in the top k
list for any query

  Where else have you seen lossy and lossless
compresion techniques?

Why compress the dictionary

  Must keep in memory
  Search begins with the dictionary
  Memory footprint competition
  Embedded/mobile devices

What is a straightforward way of
storing the dictionary?

What is a straightforward way of
storing the dictionary?

  Array of fixed-width entries
  ~400,000 terms; 28 bytes/term = 11.2 MB.

20 bytes 4 bytes each

Fixed-width terms are wasteful

  Any problem with this approach?
  Most of the bytes in the Term column are wasted –

we allot 20 bytes for 1 letter terms
  And we still can’t handle supercalifragilisticexpialidocious

  Written English averages ~4.5 characters/word
  Is this the number to use for estimating the

dictionary size?
  Ave. dictionary word in English: ~8 characters
  Short words dominate token counts but not type

average

Any ideas?

  Store the dictionary as one long string

  Gets ride of wasted space
  If the average word is 8 characters, what is our

savings over the 20 byte representation?
  Theoretically, 60%
  Any issues?

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Dictionary-as-a-String

  Store dictionary as a (long) string of characters:
  Pointer to next word shows end of current word

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

How much memory to store the pointers?

Space for dictionary as a string

  Fixed-width
  20 bytes per term = 8 MB

  As a string
  6.4 MB (3.2 for dictionary and 3.2 for pointers)

  20% reduction!

  Still a long way from 60%. Any way we can store
less pointers?

Blocking

  Store pointers to every kth term string

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

What else do we need?

Blocking

  Store pointers to every kth term string
  Example below: k = 4

  Need to store term lengths (1 extra byte)
….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.

Net

  Where we used 3 bytes/pointer without blocking
  3 x 4 = 12 bytes for k=4 pointers,

now we use 3+4=7 bytes for 4 pointers.

Shaved another ~0.5MB; can save more with larger k.

Why not go with larger k?

Dictionary search without blocking

•  How would we search for a dictionary entry?

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Dictionary search without blocking

•  Binary search

•  Assuming each
dictionary term is equally
likely in query (not really
so in practice!), average
number of comparisons
= ?
•  (1+2·2+4·3+4)/8 ~2.6

Dictionary search with blocking

  What about with blocking?

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Dictionary search with blocking

  Binary search down to 4-term block
  Then linear search through terms in block.

  Blocks of 4 (binary tree), avg. = ?
  (1+2·2+2·3+2·4+5)/8 = 3 compares

More improvements…

  We’re storing the words in sorted order

  Any way that we could further compress this
block?

8automata8automate9automatic10automation

Front coding

  Front-coding:
  Sorted words commonly have long common prefix

– store differences only
  (for last k-1 in a block of k)
8automata8automate9automatic10automation

→8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat

Begins to resemble general string compression

RCV1 dictionary compression
Technique Size in MB

Fixed width 11.2

String with pointers to every term 7.6

Blocking k = 4 7.1

Blocking + front coding 5.9

Postings compression

  The postings file is much larger than the
dictionary, by a factor of at least 10

  A posting for our purposes is a docID
  Regardless of our postings list data structure, we

need to store all of the docIDs

  For Reuters (800,000 documents), we would use
32 bits per docID when using 4-byte integers

  Alternatively, we can use log2 800,000 ≈ 20 bits
per docID

Postings: two conflicting forces

  Where is most of the storage going?
  Frequent terms will occur in most of the

documents and require a lot of space
  A term like the occurs in virtually every doc, so

20 bits/posting is too expensive.
  Prefer 0/1 bitmap vector in this case

  A term like arachnocentric occurs in maybe one
doc out of a million – we would like to store this
posting using log2 1M ~ 20 bits.

Postings file entry

  We store the list of docs containing a term in
increasing order of docID.
  computer: 33,47,154,159,202 …

  Is there another way we could store this sorted
data?

  Store gaps: 33,14,107,5,43 …
  14 = 47-33
  107 = 154 – 47
  5 = 159 - 154

Fixed-width

  How many bits do we need to encode the gaps?

  Does this buy us anything?

Variable length encoding

  Aim:
  For arachnocentric, we will use ~20 bits/gap

entry
  For the, we will use ~1 bit/gap entry

  Key challenge: encode every integer (gap) with
as few bits as needed for that integer

1, 5, 5000, 1, 1524723, …

for smaller integers, use fewer bits
for larger integers, use more bits

Variable length coding

1, 5, 5000, 1, 1124 …

1, 101, 1001110001, 1, 10001100101 …

Fixed width:

000000000100000001011001110001 …

every 10 bits

Variable width:

11011001110001110001100101 …

?

Variable Byte (VB) codes

  Rather than use 20 bits, i.e. record gaps with the
smallest number of bytes to store the gap

1, 101, 1001110001

00000001, 00000101, 00000010 01110001

1 byte 1 byte 2 bytes

00000001000001010000001001110001

?

VB codes

  Reserve the first bit of each byte as the
continuation bit

  If the bit is 1, then we’re at the end of the bytes
for the gap

  If the bit is 0, there are more bytes to read

  For each byte used, how many bits of the gap are
we storing?

1, 101, 1001110001

100000011000010100000100 11110001

Example
docIDs 824 829 215406
gaps 5 214577
VB code 00000110

10111000
10000101 00001101

00001100
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Other variable codes

  Instead of bytes, we can also use a different
“unit of alignment”: 32 bits (words), 16 bits, 4
bits (nibbles) etc.

  What are the pros/cons of a smaller/larger
unit of alignment?
  Larger units waste less space on continuation bits

(1 of 32 vs. 1 of 8)
  Smaller unites waste less space on encoding

smaller number, e.g. to encode ‘1’ we waste (6
bits vs. 30 bits)

More codes

  Still seems wasteful
  What is the major challenge for these variable

length codes?
  We need to know the length of the number!

  Idea: Encode the length of the number so that
we know how many bits to read

100000011000010100000100 11110001

Gamma codes

  Represent a gap as a pair length and offset
  offset is G in binary, with the leading bit cut off

  13 → 1101 → 101
  17 → 10001 → 0001
  50 → 110010 → 10010

  length is the length of offset
  13 (offset 101), it is 3
  17 (offset 0001), it is 4
  50 (offset 10010), it is 5

Encoding the length

  We’ve stated what the length is, but not how to
encode it

  What is a requirement of our length encoding?
  Lengths will have variable length (e.g. 3, 4, 5 bits)
  We must be able to decode it without any ambiguity

  Any ideas?
  Unary code

  Encode a number n as n 1’s, followed by a 0, to
mark the end of it

  5 → 111110
  12 → 1111111111110

Gamma code examples
number length offset γ-code

0
1
2
3
4
9

13
24

511
1025

Gamma code examples
number length offset γ-code

0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Gamma code properties

  Uniquely prefix-decodable, like VB
  All gamma codes have an odd number of bits

  What is the fewest number of bits we could
expect to express a gap (without any other
knowledge of the other gaps)?
  log2 (gap)

  How many bits do gamma codes use?
  2 log2 (gap) +1 bits
  Almost within a factor of 2 of best possible

Gamma seldom used in practice

  Machines have word boundaries – 8, 16, 32 bits
  Compressing and manipulating at individual bit-

granularity will slow down query processing
  Variable byte alignment is potentially more

efficient
  Regardless of efficiency, variable byte is

conceptually simpler at little additional space cost

RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ-encoded 101.0

Index compression summary

  We can now create an index for highly efficient
Boolean retrieval that is very space efficient

  Only 4% of the total size of the collection
  Only 10-15% of the total size of the text in the

collection
  However, we’ve ignored positional information
  Hence, space savings are less for indexes used

in practice
  But techniques substantially the same

Resources

  IIR 5
  F. Scholer, H.E. Williams and J. Zobel. 2002.

Compression of Inverted Indexes For Fast Query
Evaluation. Proc. ACM-SIGIR 2002.

  V. N. Anh and A. Moffat. 2005. Inverted Index
Compression Using Word-Aligned Binary Codes.
Information Retrieval 8: 151–166.

