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Administrative 

  Homework 2 
  Assignment 1 
  Assignment 2 

  Pair programming? 





RCV1 token normalization 

size of word types (terms) 

dictionary 

Size 
(K) 

∆% cumul 
% 

Unfiltered 484 
No numbers 474 -2 -2 
Case folding 392 -17 -19 
30 stopwords 391 -0 -19 
150 stopwords 391 -0 -19 
stemming 322 -17 -33 



TDT token normalization 
normalization terms % change 
none 120K - 

number folding 117K 3% 

lowercasing 100K 17% 

stemming 95K 25% 

stoplist 120K 0% 

number & lower & stoplist 97K 20% 

all 78K 35% 

What normalization technique(s) should we use? 



Index parameters vs. what we index 
size of word types (terms) non-positional 

postings 
positional postings 

dictionary non-positional index  positional index 

Size 
(K) 

∆% cumul 
% 

Size (K) ∆ 
% 

cumul 
% 

Size (K) ∆ 
% 

cumul 
% 

Unfiltered 484 109,971 197,879 
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9 
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9 
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38 
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52 
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52 
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Corpora statistics 

statistic TDT Reuters RCV1 
documents 16K 800K 
avg. # of tokens 
per doc 

400 200 

terms 100K 400K 
non-positional 
postings 

? 100M 



How does the vocabulary size grow 
with the size of the corpus? 

number of documents 
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How does the vocabulary size grow 
with the size of the corpus? 

log of the number of documents 
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Heaps’ law 

  Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5. 
  Does this explain the plot we saw before? 

  What does this say about the vocabulary size as we 
increase the number of documents? 
  there are almost always new words to be seen: increasing 

the number of documents increases the vocabulary size 
  to get a linear increase in vocab size, need to add 

exponential number of documents 

Vocab size = k (tokens)b 

M = k Tb 

log M= log k + b log(T) 



How does the vocabulary size grow 
with the size of the corpus? 

log of the number of documents 
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1.64 is the best least 
squares fit. 

M = 101.64T0.49  

k = 101.64 ≈ 44 
b = 0.49. 



Discussion 

  How do token normalization techniques 
and similar efforts like spelling 
correction interact with Heaps’ law? 



Heaps’ law and compression 

  Today, we’re talking about index compression, 
i.e. reducing the memory requirement for storing 
the index 

  What implications does Heaps’ law have for 
compression? 
  Dictionary sizes will continue to increase 
  Dictionaries can be very large 



How does a word’s frequency relate to 
it’s frequency rank? 

word’s frequency rank 
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How does a word’s frequency relate to 
it’s frequency rank? 

log of the frequency rank 
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Zipf’s law 

  In natural language, there are a few very frequent 
terms and very many very rare terms 

  Zipf’s law: The ith most frequent term has frequency 
proportional to 1/i  

  where c is a constant 

frequencyi ∝ c/i  

log(frequencyi) ∝ log c – log i  



Consequences of Zipf’s law 

  If the most frequent term (the) occurs cf1 
times, how often do the 2nd and 3rd most frequent 
occur? 
  then the second most frequent term (of) occurs 

cf1/2 times 
  the third most frequent term (and) occurs cf1/3 

times …  
  If we’re counting the number of words in a given 

frequency range, lowering the frequency band 
linearly results in an exponential increase in the 
number of words 



Zipf’s law and compression 

  What implications does Zipf’s law have for 
compression? 

word’s frequency rank 
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Some terms will 
occur very frequently 
in positional postings 
lists 

Dealing with these  
well can drastically 
reduce the index size 



Index compression 

  Compression techniques attempt to decrease the 
space required to store an index 

  What other benefits does compression have? 
  Keep more stuff in memory (increases speed) 
  Increase data transfer from disk to memory 

  [read compressed data and decompress] is faster than 
[read uncompressed data] 

  What does this assume? 
  Decompression algorithms are fast 
  True of the decompression algorithms we use 



Inverted index 

word 1 

word 2 

word n 

… 
What do we need to store? 

How are we storing it? 



Compression in inverted indexes 

  First, we will consider space for dictionary 
  Make it small enough to keep in main memory 

  Then the postings 
  Reduce disk space needed, decrease time to read 

from disk 
  Large search engines keep a significant part of 

postings in memory 



Lossless vs. lossy compression 

  What is the difference between lossy and lossless 
compression techniques? 

  Lossless compression: All information is preserved 
  Lossy compression: Discard some information, but 

attempt to keep information that is relevant 
  Several of the preprocessing steps can be viewed as lossy 

compression: case folding, stop words, stemming, number 
elimination. 

  Prune postings entries that are unlikely to turn up in the top k 
list for any query 

  Where else have you seen lossy and lossless 
compresion techniques? 



Why compress the dictionary 

  Must keep in memory 
  Search begins with the dictionary 
  Memory footprint competition 
  Embedded/mobile devices 



What is a straightforward way of 
storing the dictionary? 



What is a straightforward way of 
storing the dictionary? 

  Array of fixed-width entries 
  ~400,000 terms; 28 bytes/term = 11.2 MB. 

20 bytes 4 bytes each 



Fixed-width terms are wasteful 

  Any problem with this approach? 
  Most of the bytes in the Term column are wasted – 

we allot 20 bytes for 1 letter terms 
  And we still can’t handle supercalifragilisticexpialidocious 

  Written English averages ~4.5 characters/word 
  Is this the number to use for estimating the 

dictionary size? 
  Ave. dictionary word in English: ~8 characters 
  Short words dominate token counts but not type 

average 



Any ideas? 

  Store the dictionary as one long string 

  Gets ride of wasted space 
  If the average word is 8 characters, what is our 

savings over the 20 byte representation? 
  Theoretically, 60% 
  Any issues? 

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo…. 



Dictionary-as-a-String 

  Store dictionary as a (long) string of characters: 
   Pointer to next word shows end of current word 

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo…. 

Total string length = 
400K x 8B = 3.2MB 

Pointers resolve 3.2M 
positions: log23.2M = 

22bits = 3bytes 

How much memory to store the pointers? 



Space for dictionary as a string 

  Fixed-width 
  20 bytes per term = 8 MB 

   As a string 
  6.4 MB (3.2 for dictionary and 3.2 for pointers) 

  20% reduction! 

  Still a long way from 60%.  Any way we can store 
less pointers? 



Blocking 

  Store pointers to every kth term string 

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo…. 

What else do we need? 



Blocking 

  Store pointers to every kth term string 
  Example below: k = 4 

  Need to store term lengths (1 extra byte) 
….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo…. 

 Save 9 bytes 
 on 3 
 pointers. 

Lose 4 bytes on 
term lengths. 



Net 

  Where we used 3 bytes/pointer without blocking 
  3 x 4 = 12 bytes for k=4 pointers, 

now we use 3+4=7 bytes for 4 pointers. 

Shaved another ~0.5MB; can save more with larger k. 

Why not go with larger k? 



Dictionary search without blocking 

•  How would we search for a dictionary entry? 

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo…. 



Dictionary search without blocking 

•  Binary search 

•  Assuming each 
dictionary term is equally 
likely in query (not really 
so in practice!), average 
number of comparisons 
= ? 
•  (1+2·2+4·3+4)/8 ~2.6 



Dictionary search with blocking 

  What about with blocking? 

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo…. 



Dictionary search with blocking 

  Binary search down to 4-term block 
  Then linear search through terms in block. 

  Blocks of 4 (binary tree), avg. = ? 
  (1+2·2+2·3+2·4+5)/8 = 3 compares 



More improvements… 

  We’re storing the words in sorted order 

  Any way that we could further compress this 
block? 

8automata8automate9automatic10automation 



Front coding 

  Front-coding: 
  Sorted words commonly have long common prefix 

– store differences only 
  (for last k-1 in a block of k) 
8automata8automate9automatic10automation 

→8automat*a1e2ic3ion 

Encodes automat Extra length 
beyond automat 

Begins to resemble general string compression 



RCV1 dictionary compression 
Technique Size in MB 

Fixed width 11.2 

String with pointers to every term 7.6 

Blocking k = 4 7.1 

Blocking + front coding 5.9 



Postings compression 

  The postings file is much larger than the 
dictionary, by a factor of at least 10 

  A posting for our purposes is a docID 
  Regardless of our postings list data structure, we 

need to store all of the docIDs 

  For Reuters (800,000 documents), we would use 
32 bits per docID when using 4-byte integers 

  Alternatively, we can use log2 800,000 ≈ 20 bits 
per docID 



Postings: two conflicting forces 

  Where is most of the storage going? 
  Frequent terms will occur in most of the 

documents and require a lot of space 
  A term like the occurs in virtually every doc, so 

20 bits/posting is too expensive. 
  Prefer 0/1 bitmap vector in this case 

  A term like arachnocentric occurs in maybe one 
doc out of a million – we would like to store this 
posting using log2 1M ~ 20 bits. 



Postings file entry 

  We store the list of docs containing a term in 
increasing order of docID. 
  computer: 33,47,154,159,202 … 

  Is there another way we could store this sorted 
data? 

  Store gaps: 33,14,107,5,43 … 
  14 = 47-33 
  107 = 154 – 47 
  5 = 159 - 154 



Fixed-width 

  How many bits do we need to encode the gaps? 

  Does this buy us anything? 



Variable length encoding 

  Aim: 
  For arachnocentric, we will use ~20 bits/gap 

entry 
  For the, we will use ~1 bit/gap entry 

  Key challenge: encode every integer (gap) with 
as few bits as needed for that integer 

1, 5, 5000, 1, 1524723, … 

for smaller integers, use fewer bits 
for larger integers, use more bits 



Variable length coding 

1, 5, 5000, 1, 1124 … 

1, 101, 1001110001, 1, 10001100101 … 

Fixed width: 

000000000100000001011001110001 … 

every 10 bits 

Variable width: 

11011001110001110001100101 … 

? 



Variable Byte (VB) codes 

  Rather than use 20 bits, i.e. record gaps with the 
smallest number of bytes to store the gap 

1, 101, 1001110001 

00000001, 00000101, 00000010 01110001 

1 byte 1 byte 2 bytes 

00000001000001010000001001110001 

? 



VB codes 

  Reserve the first bit of each byte as the 
continuation bit 

  If the bit is 1, then we’re at the end of the bytes 
for the gap 

  If the bit is 0, there are more bytes to read 

  For each byte used, how many bits of the gap are 
we storing? 

1, 101, 1001110001 

100000011000010100000100 11110001 



Example 
docIDs 824  829  215406 
gaps 5 214577 
VB code 00000110 

10111000  
10000101  00001101 

00001100 
10110001 

Postings stored as the byte concatenation 
000001101011100010000101000011010000110010110001 

Key property: VB-encoded postings are 
uniquely prefix-decodable. 

For a small gap (5), VB 
uses a whole byte. 



Other variable codes 

  Instead of bytes, we can also use a different 
“unit of alignment”: 32 bits (words), 16 bits, 4 
bits (nibbles) etc. 

  What are the pros/cons of a smaller/larger 
unit of alignment? 
  Larger units waste less space on continuation bits 

(1 of 32 vs. 1 of 8) 
  Smaller unites waste less space on encoding 

smaller number, e.g. to encode ‘1’ we waste (6 
bits vs. 30 bits) 



More codes 

  Still seems wasteful 
  What is the major challenge for these variable 

length codes? 
  We need to know the length of the number! 

  Idea:  Encode the length of the number so that 
we know how many bits to read 

100000011000010100000100 11110001 



Gamma codes 

  Represent a gap as a pair length and offset 
  offset is G in binary, with the leading bit cut off 

  13 → 1101 → 101 
  17 → 10001 → 0001 
  50 → 110010 → 10010 

  length is the length of offset 
  13 (offset 101), it is 3 
  17 (offset 0001), it is 4 
  50 (offset 10010), it is 5 



Encoding the length  

  We’ve stated what the length is, but not how to 
encode it 

  What is a requirement of our length encoding? 
  Lengths will have variable length (e.g. 3, 4, 5 bits) 
  We must be able to decode it without any ambiguity 

  Any ideas? 
  Unary code 

  Encode a number n as n 1’s, followed by a 0, to 
mark the end of it 

  5 → 111110 
  12 → 1111111111110 



Gamma code examples 
number length  offset  γ-code 

0 
1 
2 
3 
4 
9 

13 
24 

511 
1025 



Gamma code examples 
number length  offset  γ-code 

0 none 
1 0 0 
2 10 0 10,0 
3 10 1 10,1 
4 110  00 110,00 
9 1110 001 1110,001 

13 1110 101 1110,101 
24 11110 1000 11110,1000 

511 111111110 11111111 111111110,11111111 
1025 11111111110 0000000001 11111111110,0000000001 



Gamma code properties 

  Uniquely prefix-decodable, like VB 
  All gamma codes have an odd number of bits 

  What is the fewest number of bits we could 
expect to express a gap (without any other 
knowledge of the other gaps)? 
  log2 (gap) 

  How many bits do gamma codes use? 
  2 log2 (gap) +1 bits 
  Almost within a factor of 2 of best possible 



Gamma seldom used in practice 

  Machines have word boundaries – 8, 16, 32 bits 
  Compressing and manipulating at individual bit-

granularity will slow down query processing 
  Variable byte alignment is potentially more 

efficient 
  Regardless of efficiency, variable byte is 

conceptually simpler at little additional space cost 



RCV1 compression 
Data structure  Size in MB 
dictionary, fixed-width 11.2 
dictionary, term pointers into string 7.6 
with blocking, k = 4 7.1 
with blocking & front coding 5.9 
collection (text, xml markup etc) 3,600.0 
collection (text) 960.0 
Term-doc incidence matrix 40,000.0 
postings, uncompressed (32-bit words) 400.0 
postings, uncompressed (20 bits) 250.0 
postings, variable byte encoded 116.0 
postings, γ-encoded 101.0 



Index compression summary 

  We can now create an index for highly efficient 
Boolean retrieval that is very space efficient 

  Only 4% of the total size of the collection 
  Only 10-15% of the total size of the text in the 

collection 
  However, we’ve ignored positional information 
  Hence, space savings are less for indexes used 

in practice 
  But techniques substantially the same 
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