Index Compression

David Kauchak
cs160
Fall 2009

adapted from:
http://www.stanford.edu/class/cs276/handouts/lecture5-indexcompression.ppt

Administrative

= Homework 2
= Assignment 1

= Assignment 2
» Pair programming?

N N ™

Topic Detection and Tracking
| ’ > + X http://projects.ldc.upenn.edu/TDT/ ¢ Qr tdt (4
(D] i Apple Yahoo! Google Maps YouTube Wikipedia News (653)v Popularv

Topic Detection and Tracking

Topic Detection and Tracking (TDT) is a multi-site research project, now in its third phase, to develop core
technologies for a news understanding systems. Specifically, TDT systems discover the topical structure in unsegmented
streams of news reporting as it appears across multiple media and in different languages. For a detailed discussion of the
goals of TDT, see Charles Wayne's overview. The NIST web site describes the evaluation methodology and reports on
previous phases of TDT research. LDC developed the corpus for the second phase of TDT and is currently developing the
phase three corpus. More detailed information follows on the phases of TDT and the corpora they involve.

Pilot-Study

TDT 2 (corpus used for training and for 1998 test)

TDT 3 (corpus used in 1999, 2000 and 2001 tests)

TDT 2000 -- takes you to the NIST TDT-2000 web page
TDT 2001 -- takes you to the NIST TDT-2001 web page
TDT 4 (corpus used for 2002, 2003 tests)

TDT 5 (corpus used for 2004 test)

RCV1 token normalization

word types (terms)

dictionary

Size A% cumul

(K) %
Unfiltered 484
No numbers 474 -2 -2
Case folding 392 -17 -19
30 stopwords 391 -0 -19
150 stopwords 391 -0 -19

stemming 322 -17 -33

TDT token normalization

none 120K -

number folding 117K 3%
lowercasing 100K 17%
stemming 95K 25%
stoplist 120K 0%
number & lower & stoplist 97K 20%
all 78K 35%

What normalization technique(s) should we use?

Index parameters vs. what we index

word types (terms) | non-positional positional postings
postings

dictionary non-positional index positional index

Size A% cumul Size (K) A cumul Size (K) A cumul

(K) % % % % %
Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 O -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94517 -47 -52

stemming 322 -17 -33 63,812 -4 42 94517 O -52

Index parameters vs. what we index

word types (terms) | non-positional positional postings
postings

dictionary non-positional index positional index

Size A% cumul Size (K) A cumul Size (K) A cumul

(K) % % % % %
Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 O -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94517 -47 -52

stemming 322 -17 -33 63,812 -4 42 94517 O -52

Index parameters vs. what we index

word types (terms) | non-positional positional postings
postings

dictionary non-positional index positional index

Size A% cumul Size (K) A cumul Size (K) A cumul

(K) % % % % %
Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 O -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94517 -47 -52

stemming 322 -17 -33 63,812 -4 42 94517 O -52

Corpora statistics

documents 16K 800K
avg. # of tokens 400 200
per doc

terms 100K 400K
non-positional ? 100M

postings

How does the vocabulary size grow
with the size of the corpus?

,__>

vocabulary size

nhumber of documents

How does the vocabulary size grow
with the size of the corpus?

log of the vocabulary size

log10 T

log of the number of documents

Heaps’' law

Vocab size = k (tokens)b

M=k Tb
= [ypical values: 30 < k<100 and b = 0.5.
= Does this explain the plot we saw before?

log M= log k + b log(T)

= What does this say about the vocabulary size as we
increase the number of documents?

= there are almost always new words to be seen: increasing
the number of documents increases the vocabulary size

= to get alinear increase in vocab size, need to add
exponential number of documents

How does the vocabulary size grow
with the size of the corpus?

log of the vocabulary size

log10 M

0 2 4 6 8

log10 T

log of the number of documents

A log,(M =0.49 log,, T +

1.64 is the best least
squares fit.

M = 1(01.6470.49

k=10164= 44
b = 0.49.

Discussion

= How do token normalization techniques
and similar efforts like spelling
correction interact with Heaps’ law?

Heaps' law and compression

= [Today, we're talking about index compression,
l.e. reducing the memory requirement for storing
the index

= What implications does Heaps’ law have for
compression?
= Dictionary sizes will continue to increase

= Dictionaries can be very large

How does a word’s frequency relate to

it's frequency rank?
- —

word frequency

word’s frequency rank

How does a word’s frequency relate to

it's frequency rank?
- —

lbg10

log of the frequency

log10 rank

log of the frequency rank

Zipf's law

= In natural language, there are a few very frequent
terms and very many very rare terms

= Zipf's law: The ith most frequent term has frequency
proportional to 1/i

frequency. o< ¢/i

= where c Is a constant

log(frequency;) < log c - log |

Consequences of Zipf's law

= |f the most frequent term (the) occurs cf,
times, how often do the 2" and 3" most frequent
occur?

= then the second most frequent term (of) occurs
cf,/2 times

» the third most frequent term (and) occurs cf./3
times ...

= If we're counting the number of words in a given
frequency range, lowering the frequency band
linearly results in an exponential increase in the
number of words

Zipf's law and compression

= What implications does Zipf's law have for

compression?

\

word frequency

==

word’s frequency rank

Some terms will
occur very frequently
in positional postings
lists

Dealing with these
well can drastically
reduce the index size

Index compression

= Compression techniques attempt to decrease the
space required to store an index

= \What other benefits does compression have?
= Keep more stuff in memory (increases speed)

= Increase data transfer from disk to memory

= [read compressed data and decompress] is faster than
[read uncompressed data]
= What does this assume?
= Decompression algorithms are fast
= True of the decompression algorithms we use

Inverted index

!

word 1

!

word 2

What do we need to store?

How are we storing it?

word n » >

Compression in inverted indexes

= First, we will consider space for dictionary
= Make it small enough to keep in main memory

= [hen the postings

= Reduce disk space needed, decrease time to read
from disk

» Large search engines keep a significant part of
postings in memory

Lossless vs. lossy compression

= What is the difference between lossy and lossless
compression techniques?

= Lossless compression: All information is preserved

= Lossy compression: Discard some information, but
attempt to keep information that is relevant

= Several of the preprocessing steps can be viewed as lossy
compression: case folding, stop words, stemming, number
elimination.

= Prune postings entries that are unlikely to turn up in the top k
list for any query
= Where else have you seen lossy and lossless
compresion techniques?

Why compress the dictionary

= Must keep In memory
s Search begins with the dictionary
= Memory footprint competition
» Embedded/mobile devices

What is a straightforward way of
storing the dictionary?

What is a straightforward way of
storing the dictionary?

= Array of fixed-width entries
= ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms |Freq. Postings ptr.
a 656,265

aachen |65

zulu 221

AN
20 bytes 4 bytes each

Fixed-width terms are wasteful

= Any problem with this approach?

= Most of the bytes in the Term column are wasted —
we allot 20 bytes for 1 letter terms
= And we still can’t handle supercalifragilisticexpialidocious

= Written English averages ~4.5 characters/word

= Is this the number to use for estimating the
dictionary size?

= Ave. dictionary word in English: ~8 characters

= Short words dominate token counts but not type
average

Any ideas?

= Store the dictionary as one long string

....systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo.. ..

= Gets ride of wasted space

= If the average word is 8 characters, what is our
savings over the 20 byte representation?

= [heoretically, 60%
= Any issues?

Dictionary-as-a-String

= Store dictionary as a (long) string of characters:
= Pointer to next word shows end of current word

....systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo. ...

Freq. Postings ptr. Term ptr.

33

!

29

44

126

4

Total string length =
400K x 8B = 3.2MB

<=

Pointers resolve 3.2M
positions: log,3.2M =

22bits = 3bytes

How much memory to store the pointers?

Space for dictionary as a string

= Fixed-width
s 20 bytes perterm = 8 MB

= As a string
» 6.4 MB (3.2 for dictionary and 3.2 for pointers)

x 20% reduction!

= Still a long way from 60%. Any way we can store
less pointers?

Blocking

= Store pointers to every kth term string

....systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo.. ..

Freq. Postings ptr. Term ptr. J

33
29
44
126

What else do we need?

Blocking

= Store pointers to every kth term string
= Example below: k = 4

= Need to store term lengths (1 extra byte)

... 1systile9syzygetic8syzygialosyzygy 1 1szaibelyiteSszczecin9szomo. . ..

T

Postings ptr. Term ptr.

29

] Save 9 bytes Lose 4 b
ytes on
44

ron 3 <'I: term lengths.

126] pointers.

Net

= Where we used 3 bytes/pointer without blocking
s 3 X4 =12 bytes for k=4 pointers,

now we use 3+4=7 bytes for 4 pointers.

Shaved another ~0.5MB; can save more with larger k.

Why not go with larger k?

Dictionarx search without blocking

. How would we search for a dictionary entry?

....systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo. ...

Freq. Postings ptr. Term ptr. J

33
29
44
126

Dictionary search without blockin

. (142:2+4-3+4)/8 ~2.6 @<

- Binary search > 0
. Assuming each /®
dictionary term is equally ®\

likely in query (not really / (i)

so in practice!), average @

number of comparisons

=7 AN ()

Dictionary search with blocking

= \What about with blocking?

... 1systile9syzygetic8syzygialosyzygy 1 1szaibelyiteSszczecin9szomo. . ..

Freq. Postings ptr. Term ptr.

29
44

126

Dictionary search with blocking

= Binary search down to 4-term block
= Then linear search through terms in block.

= Blocks of 4 (binary tree), avg. = 7
m (1+2:2+2-3+2:4+5)/8 = 3 compares

More improvements...

Sautomatal8automate9automaticl Oautomation

= We're storing the words in sorted order

= Any way that we could further compress this
block?

Front coding

s Front-coding:

= Sorted words commonly have long common prefix
— store differences only

» (for last k-1 in a block of k)
S8automataSautomate9automatic10automation

e8automatj'j alelic3ion

Extra length
beyond automat

Encodes automat

Begins to resemble general string compression

RCV1 dictionary compression

w

Fixed width 11.2
String with pointers to every term 7.6
Blocking k= 4 7.1

Blocking + front coding 5.9

Postings compression

= The postings file is much larger than the
dictionary, by a factor of at least 10

= A posting for our purposes is a doclID

= Regardless of our postings list data structure, we
need to store all of the doclIDs

= For Reuters (800,000 documents), we would use
32 bits per doclD when using 4-byte integers

= Alternatively, we can use log, 800,000 = 20 bits
per doclD

Postings: two conflicting forces

= Where is most of the storage going?

= Frequent terms will occur in most of the
documents and require a lot of space

= A term like the occurs in virtually every doc, so
20 bits/posting is too expensive.

= Prefer 0/1 bitmap vector in this case
= Aterm like arachnocentric occurs in maybe one

doc out of a million — we would like to store this
posting using log, 1M ~ 20 bits.

Postings file entry

= We store the list of docs containing a term in
iIncreasing order of docliD.

= computer.(33,47|154,159,202 ...

= |Is there another way we could store this sorted
data?

= Store gaps: |33,14(,107,5,43 ...
» 14 =47-33
s 107 =154 — 47
m 5=159-154

Fixed-width

encoding postings list

THE doclDs . 283042 283043 283044 283045
gaps 1 1 1
COMPUTER docIDs . 283047 283154 283159 283202
gaps 107 5 43
ARACHNOCENTRIC doclDs 252000 500100
gaps 252000 248100

= How many bits do we need to encode the gaps?

= Does this buy us anything?

Variable length encoding

= Aim:
s For arachnocentric, we will use ~20 bits/gap
entry

= For the, we will use ~1 bit/gap entry

= Key challenge: encode every integer (gap) with
as few bits as needed for that integer

1,5, 5000, 1, 1524723, ...

for smaller integers, use fewer bits
for larger integers, use more bits

Variable length coding

1,5,5000,1,1124 ...

1,101, 1001110001, 1, 10001100101 ...
Fixed width:

\OOOOOOOOO]}POOOOOO] O])\] 0011 10001/

| | |
every 10 bits

Variable width:

11T011001110001110001100101 ...
?

Variable Byte (VB) codes

= Rather than use 20 bits, i.e. record gaps with the
smallest number of bytes to store the gap

1,101, 1001110001

\OOOOOOO]}, POOOO] Ol}, POOOOO] 0011 10001}

1 byte 1 byte 2 bytes

00000001000001010000001001110001
?

VB codes

= Reserve the first bit of each byte as the
continuation bit

= If the bitis 1, then we're at the end of the bytes
for the gap

= If the bitis 0, there are more bytes to read
1, 101, 1001110001

100000011000010100000100 11110001

= For each byte used, how many bits of the gap are
we storing?

Example

gaps 5 214577

VB code 00000110 10000101 00001101
10111000 00001100
10110001

Postings stored as the byte concatenation
00000110101110001000010710000110100001T00T0110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Other variable codes

= Instead of bytes, we can also use a different
“unit of alignment”: 32 bits (words), 16 bits, 4
bits (nibbles) etc.

= What are the pros/cons of a smaller/larger
unit of alignment?

s Larger units waste less space on continuation bits
(1 of 32 vs. 1 of 8)

= Smaller unites waste less space on encoding
smaller number, e.g. to encode ‘1° we waste (6
bits vs. 30 bits)

More codes

1900000}1 1000010100000100 11110001

s Still seems wasteful

= What is the major challenge for these variable
length codes?

= We need to know the length of the number!

= Ildea: Encode the length of the number so that
we know how many bits to read

Gamma codes

= Represent a gap as a pair length and offset
= Offsetis G in binary, with the leading bit cut off
» 13— 1101 — 101
= 17 — 10001 — 0001
= 50 —» 110010 — 10010
= length is the length of offset
» 13 (offset 101), it is 3
= 17 (offset 0001), it is 4
= 50 (offset 10010), itis 5

Encoding the length

= We've stated what the length is, but not how to
encode it

= What is a requirement of our length encoding?

= Lengths will have variable length (e.g. 3, 4, 5 bits)

= \We must be able to decode it without any ambiguity
= Any ideas?
= Unary code

= Encode a number nas n 1's, followed by a 0, to
mark the end of it

» 5—> 111110
12 -5 1111111111110

Gamma code examples
number [length _[offset |ycode

w O© b WO N -~ O

911
1025

Gamma code examples
-

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

Gamma code properties

= Uniquely prefix-decodable, like VB
= All gamma codes have an odd number of bits

= What is the fewest number of bits we could
expect to express a gap (without any other
knowledge of the other gaps)?

= log, (9ap)
= How many bits do gamma codes use?

» 2 |log, (gap)| +1 bits
= Almost within a factor of 2 of best possible

Gamma seldom used In practice
-

s Machines have word boundaries — 8, 16, 32 bits

= Compressing and manipulating at individual bit-
granularity will slow down query processing

= Variable byte alignment is potentially more
efficient

= Regardless of efficiency, variable byte is
conceptually simpler at little additional space cost

RCV1 compression

dictionary, fixed-width

dictionary, term pointers into string
with blocking, k = 4

with blocking & front coding
collection (text, xml markup etc)
collection (text)

Term-doc incidence matrix
postings, uncompressed (32-bit words)
postings, uncompressed (20 bits)
postings, variable byte encoded
postings, y-encoded

11.2
7.6

7.1

5.9
3,600.0
960.0
40,000.0
400.0
250.0
116.0
101.0

Index compression summary

= We can now create an index for highly efficient
Boolean retrieval that is very space efficient

= Only 4% of the total size of the collection

= Only 10-15% of the total size of the text in the
collection

= However, we've ignored positional information

= Hence, space savings are less for indexes used
In practice

= But techniques substantially the same

Resources
-

= IIRS

s F. Scholer, H.E. Williams and J. Zobel. 2002.

Compression of Inverted Indexes For Fast Query
Evaluation. Proc. ACM-SIGIR 2002.

= V. N. Anh and A. Moffat. 2005. Inverted Index
Compression Using Word-Aligned Binary Codes.
Information Retrieval 8: 151-166.

