

http://www.xkcd.com/233/

Text Clustering

David Kauchak cs160 Fall 2009 adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt

Administrative

- 2nd status reports
- Paper review

IR code changes

- /common/cs/cs160/project/
 - requires the mysql...jar
 - will get into svn, but for now can look at code
- TDT data set with title and paragraph breaks
 - tdt.text.title or tdt.text.p.title in main data dir
- TDT is in database
 - you can access it from any where in the lab
 - can add other data sets, but let me know
 - need to write a DocumentReader class for it
 - image datasets?
 - page rank dataset?
- http://saras.cs.pomona.edu/bursti/doc.php?id=10

IR code changes

- broke up indexing and querying steps
 - pass in an index file, instead of a set of documents
 - /common/cs/cs160/project/data has one index
- Document class
 - added title and url fields
 - added paragraph boundaries (only works for docs in database right now)
- Added DB interfacing classes
 - DBDocReader (a DocReader) for iterating through documents in the database
 - DBDocFetcher to fetch documents based on document id for query time document fetching

Supervised learning

Training or learning phase

User "supervision", we're given the labels (classes)

Unsupervised learning

No "supervision", we're only given data and want to find natural groupings

What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
 - Documents within a cluster should be similar
 - Documents from different clusters should be dissimilar
- How might this be useful for IR?

Applications of clustering in IR

For improving search recall

- Cluster hypothesis Documents in the same cluster behave similarly with respect to relevance to information needs
- To improve search recall:
 - Cluster docs in corpus
 - When a query matches a doc *D*, also return other docs in the cluster containing *D*
- Hope if we do this: The query "car" will also return docs containing *automobile*

How is this different from the previous slide?

Applications of clustering in IR

Apple www.apple.com · Official Apple designs and create system, and the revolution	site s iPod and iTu ary iPhone.	nes, Mac laptop and de	sktop computers, the OS X operation
iPod iTunes Mac iPhone Store Downloads Support			
Quick access		Financial »	Products
Customer service 800-275-2273 Search within apple.com Search		199.92 ▼ -0.59 (-0.29%) US:AAPL	iPhone 3GS iPod Nano iPod Touch iMac

Apple - Wikipedia, the free encyclopedia

The **apple** is the pomaceous fruit of the **apple** tree, species Malus domestica in the rose family Rosaceae. It is one of the most widely cultivated tree fruits. Botanical information · History · Cultural aspects · **Apple** cultivars en.wikipedia.org/wiki/**Apple** · Enhanced view

vary search results over clusters/ topics to improve recall

Google News: automatic clustering gives an effective news presentation metaphor

For visualizing a document collection and its themes

- Wise et al, "Visualizing the non-visual" PNNL
- ThemeScapes, Cartia
 - [Mountain height = cluster size]

Faster vectors space search: cluster pruning

A data set with clear cluster structure

Issues for clustering

- Representation for clustering
 - Document representation
 - Vector space? Normalization?
 - Need a notion of similarity/distance
- Flat clustering or hierarchical
- Number of clusters
 - Fixed a priori
 - Data driven?

Clustering Algorithms

- Flat algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - Model based clustering
 - Spectral clustering
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive

Hard vs. soft clustering

 Hard clustering: Each document belongs to exactly one cluster

- Soft clustering: A document can belong to more than one cluster (probabilistic)
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes

Partitioning Algorithms

Given:

- a set of documents
- the number of clusters K
- Find: a partition of K clusters that optimizes a partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms

K-Means

- Start with some initial cluster centers randomly chosen as documents/points from the data
- Iterate:
 - Assign/cluster each document to closest center
 - Recalculate centers as the mean of the points in a cluster, c:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

K-means: an example

K-means: Initialize centers randomly

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

No changes: Done

K-means variations/parameters

- Initial (seed) centroids
- Convergence
 - A fixed number of iterations
 - Doc partition unchanged
 - Cluster centers don't change
- K

K-means: Initialize centers randomly

What would happen here?

Seed selection ideas?

Seed Choice

- Results can vary drastically based on random seed selection
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings
- Common heuristics
 - Random points in the space
 - Random documents
 - Doc least similar to any existing mean
 - Try out multiple starting points
 - Initialize with the results of another clustering method

How Many Clusters?

- Number of clusters K must be provided
- Somewhat application dependent
- How should we determine the number of clusters?

One approach

Assume data should be Gaussian (i.e. spherical)

- Test for this
 - Testing in high dimensions doesn't work well
 - Testing in lower dimensions does work well

ideas?

- For each cluster, project down to one dimension
 - Use a statistical test to see if the data is Gaussian

- For each cluster, project down to one dimension
 - Use a statistical test to see if the data is Gaussian

- For each cluster, project down to one dimension
 - Use a statistical test to see if the data is Gaussian

- For each cluster, project down to one dimension
 - Use a statistical test to see if the data is Gaussian

The dimension of the projection is based on the data

On synthetic data

pass

pass

fail

Compared to other approaches

Figure 4: $2 \cdot d$ synthetic dataset with 5 true clusters. On the left, G-means correctly chooses 5 centers and deals well with non-spherical data. On the right, the BIC causes X-means to overfit the data, choosing 20 unevenly distributed clusters.

http://cs.baylor.edu/~hamerly/papers/nips_03.pdf

Time Complexity

- Variables: K clusters, n documents, m dimensions, I iterations
- What is the runtime complexity?
 - Computing distance between two docs is O(m) where m is the dimensionality of the vectors.
 - Reassigning clusters: O(Kn) distance computations, or O(Knm)
 - Computing centroids: Each doc gets added once to some centroid: O(nm)
 - Assume these two steps are each done once for *I* iterations: O(*Iknm*)

In practice, K-means converges quickly and is fairly fast

Problems with K-means

- Determining K is challenging
- Spherical assumption about the data (distance to cluster center)
- Hard clustering isn't always right

EM clustering: mixtures of Gaussians

Assume data came from a mixture of Gaussians (elliptical data), assign data to cluster with a certain *probability*

EM is a general framework

- Create an initial model, θ'
 - Arbitrarily, randomly, or with a small set of training examples
- Use the model θ' to obtain another model θ such that

 $\sum_{i} \log P_{\theta}(y_i) > \sum_{i} \log P_{\theta'}(y_i)$ i.e. better models data

- Let θ' = θ and repeat the above step until reaching a local maximum
 - Guaranteed to find a better model after each iteration

Where else have you seen EM?

E and M steps

Use the current model to create a better model

Expectation: Given the current model, figure out the expected probabilities of the documents to each cluster

$p(x|\theta_c)$

Maximization: Given the probabilistic assignment of all the documents, estimate a new model, θ_c

Each iterations increases the likelihood of the data and guaranteed to converge!

Similar to K-Means

Iterate:

Assign/cluster each document to closest center

Expectation: Given the current model, figure out the expected probabilities of the documents to each cluster

 $p(x|\theta_c)$

 Recalculate centers as the mean of the points in a cluster

Maximization: Given the probabilistic assignment of all the documents, estimate a new model, θ_c

Model: mixture of Gaussians

$$\mathcal{N}[x;\mu,\Sigma] = \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

Covariance determines the shape of these contours

• Fit these Gaussian densities to the data, one per cluster

EM example

Figure from Chris Bishop

EM example

Figure from Chris Bishop

Other algorithms

- K-means and EM-clustering are by far the most popular, particularly for documents
- However, they can't handle all clustering tasks
- What types of clustering problems can't they handle?

Non-gaussian data

What is the problem?

Similar to classification: global decision vs. local decision

Spectral clustering

Similarity Graph

- Represent dataset as a weighted graph G(V,E)
- For documents $\{x_1, x_2, ..., x_6\}$
 - $V={x_i}$ Set of n vertices representing documents/points
 - $E=\{w_{ij}\}$ Set of weighted edges indicating pair-wise similarity between documents/points

What does clustering represent?

Graph Partitioning

- Clustering can be viewed as partitioning a similarity graph
- Bi-partitioning task:
 - Divide vertices into two disjoint groups (*A*,*B*)

What would define a good partition?

Clustering Objectives

- Traditional definition of a "good" clustering:
 - ^{1.} Points assigned to same cluster should be highly similar.
 - 2. Points assigned to different clusters should be highly dissimilar.
- Apply these objectives to our graph representation

- 1. Maximise weight of within-group connections
- 2. Minimise weight of **between-group** connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition.
- *Cut:* Set of edges with only one vertex in a group.

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Can we use the minimum cut?

Graph Cut Criteria

Problem:

- Only considers external cluster connections
- Does not consider internal cluster density

Graph Cut Criteria

- Criterion: Normalised-cut (Shi & Malik,'97)
 - Consider the connectivity between groups relative to the density of each group.

$$\min Ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

- Normalize the association between groups by volume
 - *Vol(A)*: The total weight of the edges originating from group *A*

Why does this work?

Graph Cut Criteria

Criterion: Normalised-cut (Shi & Malik,'97)

 Consider the connectivity between groups relative to the density of each group.

$$\min Ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

Normalize the association between groups by volume
 Vol(A): The total weight of the edges

originating from group A

Balance between:

Prefers cuts that cut edges on average that are smaller

Prefers cuts that cut more edges

Spectral clustering examples

Spectral clustering examples

Spectral clustering examples

Ng et al On Spectral clustering: analysis and algorithm

Image GUI discussion