
http://xkcd.com/242/

Text Classification 2

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture10-textcat-naivebayes.ppt
http://www.stanford.edu/class/cs276/handouts/lecture11-vector-classify.ppt

http://www.stanford.edu/class/cs276/handouts/lecture12-SVMs.ppt

Administrative

  Image teams/GUI teams, let’s setup a meeting
time

  Project deadlines
  hw6 out

Bias/Variance

  Bias: How well does the model predict the
training data?
  high bias – the model doesn’t do a good job of

predicting the training data (high training set error)
  The model predictions are biased by the model

  Variance: How sensitive to the training data is the
learned model?
  high variance – changing the training data can

drastically change the learned model

Bias/Variance

  Another way to think about it is model complexity

  Simple models
  may not model data well
  high bias

  Complicated models
  may overfit to the training data
  high variance

  Why do we care about bias/variance?

Bias/variance trade-off

We want to fit a polynomial to this,
which one should we use?

Bias/variance trade-off

High variance OR high bias?

  Bias: How well does the
model predict the training
data?
  high bias – the model

doesn’t do a good job of
predicting the training data
(high training set error)

  The model predictions are
biased by the model

  Variance: How sensitive to
the training data is the
learned model?
  high variance – changing

the training data can
drastically change the
learned model

Bias/variance trade-off

High bias

  Bias: How well does the
model predict the training
data?
  high bias – the model

doesn’t do a good job of
predicting the training data
(high training set error)

  The model predictions are
biased by the model

  Variance: How sensitive to
the training data is the
learned model?
  high variance – changing

the training data can
drastically change the
learned model

Bias/variance trade-off

High variance OR high bias?

  Bias: How well does the
model predict the training
data?
  high bias – the model

doesn’t do a good job of
predicting the training data
(high training set error)

  The model predictions are
biased by the model

  Variance: How sensitive to
the training data is the
learned model?
  high variance – changing

the training data can
drastically change the
learned model

Bias/variance trade-off

High variance

  Bias: How well does the
model predict the training
data?
  high bias – the model

doesn’t do a good job of
predicting the training data
(high training set error)

  The model predictions are
biased by the model

  Variance: How sensitive to
the training data is the
learned model?
  high variance – changing

the training data can
drastically change the
learned model

Bias/variance trade-off

What do we want?

  Bias: How well does the
model predict the training
data?
  high bias – the model

doesn’t do a good job of
predicting the training data
(high training set error)

  The model predictions are
biased by the model

  Variance: How sensitive to
the training data is the
learned model?
  high variance – changing

the training data can
drastically change the
learned model

Bias/variance trade-off

Compromise between bias and
variance

  Bias: How well does the
model predict the training
data?
  high bias – the model

doesn’t do a good job of
predicting the training data
(high training set error)

  The model predictions are
biased by the model

  Variance: How sensitive to
the training data is the
learned model?
  high variance – changing

the training data can
drastically change the
learned model

k-NN vs. Naive Bayes

  k-NN has high variance and low bias.
  more complicated model
  can model any boundary
  but very dependent on the training data

  NB has low variance and high bias.
  Decision surface has to be linear
  Cannot model all data
  but, less variation based on the training data

How do k-NN and NB sit on the
variance/bias plane?

Decision trees
  Tree with internal nodes labeled by terms/features
  Branches are labeled by tests on the weight that the

term has
  farm vs. not farm
  x > 100

Decision trees
  Roots are labeled with the class

Decision trees
  Classifier categorizes a document by descending tree

following tests to leaf
  The label of the leaf node is then assigned to the document

Decision trees

wheat, not(farm), commodity, not(agriculture)?

Decision trees

not(wheat), not(farm), commodity, export, buschi?

Decision trees
  Most decision trees are binary trees
  DT make good use of a few high-leverage features
  Linear or non-linear classifier?

Decision Tree Learning

  Learn a sequence of tests on features, typically
using top-down, greedy search
  Choose the unused feature with highest

Information Gain/mutual information with the class

When will this be large?
€

I(C,F) = p(c, f)log p(c, f)
p(c)p(f)

f ∈F
∑

c∈C
∑

Decision Tree Learning

€

I(C,F) = p(c, f)log p(c, f)
p(c)p(f)

f ∈F
∑

c∈C
∑

Measure of how much information two variables share

if p(c,f) is high when both p(c) and p(f) are high and vice
versa, then high mutual information

Decision Tree Learning
  Pick one feature at each step and split the tree
  Eventually, stop splitting and calculate the

probability for each class based on the training
examples that satisfy the chain of constraints

  Key challenge is when to stop splitting

f1 !f1

f7 !f7

P(class) = .6

P(class) = .9

P(class) = .2

23

Category: “interest” – Dumais et al. (Microsoft) Decision Tree

rate=1

lending=0

prime=0

discount=0

pct=1

year=1 year=0

rate.t=1

Decision trees:
The good and the bad
  Good

  Easy to understand/interpret (set of rules/
decisions)

  Reasonable performance
  Non-linear decision boundary

  Bad
  Pruning: when do we stop splitting (overfitting)
  Problems with large numbers of features/sparse

data
  Doesn’t handle data with complex feature

interactions well
  Not generally the best performing methods

25

Linear classifiers: Which Hyperplane?

  Lots of possible solutions for a,b,c.
  Support Vector Machine (SVM)

finds an optimal solution
  Maximizes the distance

between the hyperplane and the
“difficult points” close to
decision boundary

This line
represents the

decision
boundary:

ax + by - c = 0

15.0

26

Another intuition

  If you have to place a fat separator between
classes, you have less choices, and so the
capacity of the model has been decreased

Support Vector Machine (SVM)
Support vectors

Maximize
margin

  SVMs maximize the margin
around the separating
hyperplane.

  A.k.a. large margin classifiers

  The decision function is fully
specified by a subset of training
samples, the support vectors.

  Solving SVMs is a quadratic
programming problem

  Seen by many as the most
successful current text
classification method*

*but other discriminative methods
often perform very similarly

Margin maximization

Margin maximization

Measuring the margin

What defines a hyperplane?

Measuring the margin

w

The support vectors define the hyperplane
and the margin

b

Measuring the margin

w

In an n-dimensional space, how can we
represent this hyperplane?

b

Measuring the margin

w

An n dimensional normal vector, w and?

Note that the
vector is
perpendicular
to the actual
hyperplane

Measuring the margin

w

An n dimensional vector, w and an offset, b

b

Measuring the margin

w

How do we classify points given this information?

b

Measuring the margin

w

b

f(xi) = sign(wTxi + b)

Measuring the margin

ρ

w

How can we calculate margin?

b

Measuring the margin

ρ

w

Minimum of the distance from the hyperplane
to any point(s) (specifically the support vectors)

b

Measuring the margin

ρ

w

b

r

x

x′

Want to calculate r
x’ – x is perpendicular to hyperplane

w/|w| is the unit vector in direction of w

x’ = x – rw/|w|

x’ satisfies wTx’+b = 0 because it’s on wT

So wT(x –rw/|w|) + b = 0

wTx –wTrw/|w| + b = 0
wTx –wTrw|w|/|w||w| + b = 0

wTx –wTrw|w|/wTw + b = 0

wTx –r|w| + b = 0

Linear SVM Mathematically
The linearly separable case

  Assume that all data is at least distance 1 from the hyperplane, then
the following two constraints follow for a training set {(xi ,yi)}

  For support vectors, the inequality becomes an equality
  Then, since each example’s distance from the hyperplane is

  The margin is:

wTxi + b ≥ 1 if yi = 1

wTxi + b ≤ -1 if yi = -1

Linear SVMs Mathematically
(cont.)

  Then we can formulate the quadratic optimization
problem:

  A better formulation (min ||w|| = max 1/ ||w||):

Find w and b such that

 is maximized; and for all {(xi , yi)}

wTxi + b ≥ 1 if yi=1; wTxi + b ≤ -1 if yi = -1

Find w and b such that

Φ(w) = wTw is minimized;

and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

Solving the Optimization Problem

  This is now optimizing a quadratic function subject to linear constraints
  Quadratic optimization problems are a well-known class of

mathematical programming problem, and many (intricate) algorithms
exist for solving them (with many special ones built for SVMs)

  The solution involves constructing a dual problem where a Lagrange
multiplier αi is associated with every constraint in the primary problem:

Find w and b such that
Φ(w) = wTw is minimized;
and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

Find α1…αN such that
Q(α) =Σαi - ΣΣαiαjyiyjxi

Txj is maximized and
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

An LP example

100 200 300

100

200

300

400

400

An LP example

100 200 300

100

200

300

400

400

Where is the feasibility region?

An LP example

100 200 300

100

200

300

400

400

An LP example

100 200 300

100

200

300

400

400

c = 2100

c = 1800

c = 1500

c = 1200

c = 900

c = 600

An LP example

100 200 300

100

200

300

400

400

c = 2100

c = 1800

c = 1500

c = 1200

c = 900

c = 600

to maximize, move as far in this
direction as the constraints allow

The Optimization Problem Solution
  The solution has the form:

  Each non-zero αi indicates that corresponding xi is a support vector.
  Then the classifying function will have the form:

  Notice that it relies on an inner product between the test point x and the
support vectors xi – we will return to this later.

  Also keep in mind that solving the optimization problem involved
computing the inner products xi

Txj between all pairs of training points.

w =Σαiyixi b= yk- wTxk for any xk such that αk≠ 0

f(x) = Σαiyixi
Tx + b

Soft Margin Classification

  If the training data is not
linearly separable, slack
variables ξi can be added
to allow misclassification of
difficult or noisy examples.

  Allow some errors
  Let some points be

moved to where they
belong, at a cost

  Still, try to minimize
training set errors, and to
place hyperplane “far” from
each class (large margin)

ξj

ξi

50

Soft Margin Classification
Mathematically

  The old formulation:

  The new formulation incorporating slack variables:

  Parameter C can be viewed as a way to control overfitting – a
regularization term

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and ξi ≥ 0 for all i

51

Linear SVMs: Summary
  The classifier is a separating hyperplane.

  Most “important” training points are support vectors; they define
the hyperplane.

  Quadratic optimization algorithms can identify which training
points xi are support vectors with non-zero Lagrangian
multipliers αi.

  Both in the dual formulation of the problem and in the solution
training points appear only inside inner products:

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and
(1) Σαiyi = 0
(2) 0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Non-linear SVMs
  Datasets that are linearly separable (with some noise) work out great:

  But what are we going to do if the dataset is just too hard?

  How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

53

Non-linear SVMs: Feature spaces

  General idea: the original feature space can
always be mapped to some higher-dimensional
feature space where the training set is separable:

Φ: x → φ(x)

The “Kernel Trick”

  The linear classifier relies on an inner product
between vectors K(xi,xj)=xi

Txj

  If every datapoint is mapped into high-
dimensional space via some transformation Φ:
x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

  A kernel function is some function that
corresponds to an inner product in some
expanded feature space.

Kernels
  Why use kernels?

  Make non-separable problem separable.
  Map data into better representational space

  Common kernels
  Linear
  Polynomial K(x,z) = (1+xTz)d

  Gives feature conjunctions

  Radial basis function (infinite dimensional space)

  Haven’t been very useful in text classification

56

Evaluation:
 Micro- vs. Macro-Averaging

  If we have more than one class, how do we
combine multiple performance measures into one
quantity?
  Macroaveraging: Compute performance for each

class, then average
  Microaveraging: Collect decisions for all classes,

compute contingency table, evaluate

  Benefits and drawbacks?

Which classifier do I use for a
given text classification problem?

  Is there a learning method that is optimal for all
text classification problems?

  No, because there is a tradeoff between bias and
variance

  Factors to take into account:
  How much training data is available?
  How simple/complex is the problem? (linear vs.

nonlinear decision boundary)
  How noisy is the problem?
  How stable is the problem over time?

  For an unstable problem, it’s better to use a simple and
robust classifier.

58

Manually written rules

  No training data, adequate editorial staff?
  Never forget the hand-written rules solution!

  If (wheat or grain) and not (whole or bread) then
  Categorize as grain

  In practice, rules get a lot bigger than this
  Can also be phrased using tf or tf.idf weights

  With careful crafting (human tuning on
development data) performance is high:
  Construe: 94% recall, 84% precision over 675

categories (Hayes and Weinstein 1990)
  Amount of work required is huge

  Estimate 2 days per class … plus maintenance

Very little data?

  If you’re just doing supervised classification, you
should stick to something with high bias
  There are theoretical results that Naïve Bayes

should do well in such circumstances (Ng and
Jordan 2002 NIPS)

  The interesting theoretical answer is to explore
semi-supervised training methods:
  Bootstrapping, EM over unlabeled documents, …

  The practical answer is to get more labeled data
as soon as you can
  How can you insert yourself into a process where

humans will be willing to label data for you??

A reasonable amount of data?

  We can use any number of different classifiers
  Roll out the SVM!

  But if you are using an SVM/NB etc., you should
probably be prepared with the “hybrid” solution
where there is a Boolean overlay
  Or else to use user-interpretable Boolean-like

models like decision trees
  Users like to hack, and management likes to be

able to implement quick fixes immediately

A huge amount of data?
  This is great in theory for doing accurate

classification…
  But it could easily mean that expensive methods like

SVMs (train time) or kNN (test time) are quite
impractical

  Naïve Bayes can come back into its own again!
  Or other advanced methods with linear training/test

complexity like regularized logistic regression (though
much more expensive to train)

  When you have lots of data, simple things work well!

62

A huge amount of data?

  With enough data the
choice of classifier may
not matter much, and the
best choice may be
unclear
  Data: Brill and Banko on

context-sensitive spelling
correction

  But the fact that you have
to keep doubling your
data to improve
performance is a little
unpleasant

The Real World
P. Jackson and I. Moulinier: Natural Language Processing for Online Applications

  “There is no question concerning the commercial value of
being able to classify documents automatically by content.
There are myriad potential applications of such a
capability for corporate Intranets, government
departments, and Internet publishers”

  “Understanding the data is one of the keys to successful
categorization, yet this is an area in which most
categorization tool vendors are extremely weak. Many of
the ‘one size fits all’ tools on the market have not been
tested on a wide range of content types.”

64

Does putting in “hacks” help?

  You can get a lot of value by differentially
weighting contributions from different document
zones:
  Upweighting title words helps (Cohen & Singer

1996)
  Doubling the weighting on the title words is a good rule of

thumb

  Upweighting the first sentence of each paragraph
helps (Murata, 1999)

  Upweighting sentences that contain title words
helps (Ko et al, 2002)

Does stemming/lowercasing/… help?

  As always it’s hard to tell, and empirical
evaluation is normally the gold standard

  But note that the role of tools like stemming is
rather different for TextCat vs. IR:
  For IR, you often want to collapse forms of the

verb oxygenate and oxygenation, since all of those
documents will be relevant to a query for
oxygenation

  For TextCat, with sufficient training data,
stemming does no good. It only helps in
compensating for data sparseness (which can be
severe in TextCat applications). Overly aggressive
stemming can easily degrade performance.

66

References
  IIR 14
  Fabrizio Sebastiani. Machine Learning in Automated Text

Categorization. ACM Computing Surveys, 34(1):1-47, 2002.
  Tom Mitchell, Machine Learning. McGraw-Hill, 1997.
  Yiming Yang & Xin Liu, A re-examination of text categorization

methods. Proceedings of SIGIR, 1999.
  Evaluating and Optimizing Autonomous Text Classification Systems

(1995) David Lewis. Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval

  Trevor Hastie, Robert Tibshirani and Jerome Friedman, Elements
of Statistical Learning: Data Mining, Inference and Prediction.
Springer-Verlag, New York.

  Open Calais: Automatic Semantic Tagging
  Free (but they can keep your data), provided by Thompson/Reuters

  Weka: A data mining software package that includes an implementation
of many ML algorithms

