

http://www.isi.edu/natural-language/people/knight3.html

Text Classification

David Kauchak cs160 Fall 2009

adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture10-textcat-naivebayes.ppt http://www.stanford.edu/class/cs276/handouts/lecture11-vector-classify.ppt http://www.stanford.edu/class/cs276/handouts/lecture12-SVMs.ppt

Administrative

- Colloquium
- Project proposals
 - year and where published for references
 - speed is important for most of your approaches
- Project status report due 11/18
 - be specific!
 - but, be concise

Document Classification

How might this be useful for IR?

Standing queries

- The path from information retrieval to text classification:
 - You have an information need, say:
 - Unrest in the Niger delta region
 - You want to rerun an appropriate query periodically to find new news items on this topic
 - You will be sent new documents that are found
 - I.e., it's classification not ranking
- Such queries are called standing queries
 - Long used by "information professionals"
 - A modern mass instantiation is Google Alerts

Spam filtering

From: "" <takworlld@hotmail.com> Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

More Text Classification Examples:

Many search engine functionalities use classification

Assign labels to each document or web-page:

- Labels are most often topics such as Yahoo-categories
 e.g., "finance," "sports," "news>world>asia>business"
- Labels may be genres
 e.g., "editorials" "movie-reviews" "news"
- Labels may be opinion on a person/product e.g., "like", "hate", "neutral"
- Labels may be domain-specific
 - e.g., "interesting-to-me" : "not-interesting-to-me"
 - e.g., "contains adult language" : "doesn't"
 - e.g., language identification: English, French, Chinese, ...
 - e.g., search vertical: about Linux versus not
 - e.g., "link spam" : "not link spam"

How would you do it?

Pros and cons of different approaches?

Manual approach

- Manual classification
 - Used by Yahoo! (originally; now present but downplayed), Looksmart, about.com, ODP, PubMed
 - Very accurate when job is done by experts
 - Consistent when the problem size and team is small
 - Difficult and expensive to scale
 - Means we need automatic classification methods for big problems

A slightly better manual approach

Hand-coded rule-based systems

- One technique used by many spam filter, Reuters, CIA, etc.
- Companies (Verity) provide "IDE" for writing such rules
- E.g., assign category if document contains a given boolean combination of words
- Accuracy is often very high if a rule has been carefully refined over time by a subject expert
- Building and maintaining these rules is expensive

A Verity topic (a complex classification rule)

comment line	# Beginning of art topic definition					
top-le vel top ic	art ACCRUE					
1	<pre>/author = "fsmith"</pre>					
topic de finition modifiers 🚽	∕date = "30-Dec-01"					
	∕annotation = "Topic created					
	by fsmith"					
subtopictopic	* 0.70 performing-arts ACCRUE					
eviden cetopi c	** 0.50 WORD					
topic definition modifier	∕wordtext = ballet					
eviden cetopic	** 0.50 STEM					
topic de inition modifier	/wordtext = dance					
evidencetopic	** U.5U WORD					
topic de inition modifier	∕wordtext = opera					
evidencetopic	** U.3U WORD					
topic de inition modifier	/wordtext = symphony					
subtopic * 0.70 visual-arts ACCRUE						
	** U.5U WORD					
	<pre>/wordtext = painting</pre>					
	** U.5U WORD					
	/wordtext = sculpture					
subtopic	* U./U film ACCRUE					
	** U.5U SIEM					
	/wordtext = film					
subtopic	** 0.50 motion-picture PHRASE					
	*** 1.00 WORD					
	/wordtext = motion					
	*** 1.00 WORD					
	/wordtext = picture					
	** 0.50 SIEN					
subtonic	voratext - movie					
Subtope	* U.SU VIGEO ACCRUE					
** 0.50 STEM						
/Wordtext = Video						
	Maio uc. u **					
	/wordlext = vor					
# End of art topic						

Note:

- maintenance issues (author, etc.)
- Hand-weighting of terms

Automated approaches

- Supervised learning of a document-label assignment function
 - Many systems partly rely on machine learning (Autonomy, MSN, Verity, Enkata, Yahoo!, ...)
 - k-Nearest Neighbors (simple, powerful)
 - Naive Bayes (simple, common method)
 - Support-vector machines (new, more powerful)
 - ... plus many other methods
 - No free lunch: requires hand-classified training data
- Note that many commercial systems use a mixture of methods

Bayes' Rule

$P(C,D) = P(C \mid D)P(D) = P(D \mid C)P(C)$

$$P(C \mid D) = \frac{P(D \mid C)P(C)}{P(D)}$$

How can we use this?

Bayes' Rule

Naive Bayes Classifiers

Represent a document *D* based on a attribute values

$$D = \left\langle x_1, x_2, \dots, x_n \right\rangle$$

$$class = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_n)$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, \dots, x_{n} \mid c_{j})P(c_{j})}{P(x_{1}, x_{2}, \dots, x_{n})}$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c_j) P(c_j)$$

The Naive Bayes Classifier

Conditional Independence Assumption: features detect term presence and are independent of each other given the class:

$$P(x_1, \dots, x_5 \mid C) = P(x_1 \mid C) \bullet P(x_2 \mid C) \bullet \dots \bullet P(x_5 \mid C)$$

Estimating parameters

I flip a coin 1000 times, how would you estimate the probability of heads?

I roll a 6-sided die 1000 times, how you estimate the probability of getting a '6'?

Maximum likelihood estimates

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

number of document with class

total number of document

$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

number of document in class with feature

number of document with class

What's the problem with this approach?

Problem with Max Likelihood

What if we have seen no training cases where patient had no flu and muscle aches?

$$\hat{P}(X_5 = t \mid C = nf) = \frac{N(X_5 = t, C = nf)}{N(C = nf)} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\ell = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Smoothing to Avoid Overfitting

Make every event a little probable...

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + \lambda}{N(C = c_j) + k\lambda}$$
of values of X_i

WebKB Experiment (1998)

- Classify webpages from CS departments into:
 - student, faculty, course, project
- Train on ~5,000 hand-labeled web pages
 - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU)

Data mining;

Results:

	Student	Faculty	Person	Project	Course	Departmt
Extracted	180	66	246	99	28	1
Correct	130	28	194	72	25	1
Accuracy:	72%	42%	79 %	73%	89%	100%

Naive Bayes on spam email

http://www.cnbc.cmu.edu/~jp/research/email.paper.pdf

SpamAssassin

- Naive Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 - A mutant with more mutant offspring...
 - Naive Bayes-like classifier with weird parameter estimation
 - Widely used in spam filters
 - But also many other things: black hole lists, etc.
- Many email topic filters also use NB classifiers

NB: The good and the bad

Good

- Easy to understand
- Fast to train
- Reasonable performance
- Bad
 - We can do better
 - Independence assumptions are rarely true
 - Smoothing is challenging
 - Feature selection is usually required

Recall: Vector Space Representation

- Each document is a vector, one component for each term/word
- Normally normalize vectors to unit length
- High-dimensional vector space:
 - Terms are axes
 - 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space
- How can we do classification in this space?

Documents in a Vector Space

Test Document of what class?

Test Document = Government

k-Nearest Neighbor (k-NN)

To classify document d:

- Find k nearest neighbors of d
- Choose as the class the majority class within the k nearest neightbors
- Can get rough approximations of probability of belonging to a class as fraction of k
- Does not explicitly compute boundary or model
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning

Example: k=6 (6-NN)

k Nearest Neighbor

- What value of k should we use?
 - Using only the closest example (1NN) to determine the class is subject to errors due to:
 - A single atypical example
 - Noise
 - Pick k too large and you end up with looking at neighbors that are not that close
 - Value of k is typically odd to avoid ties; 3 and 5 are most common.

k-NN decision boundaries

decision (unlike in Naïve Bayes, etc.)

Similarity Metrics

- Nearest neighbor methods depends on a similarity (or distance) metric
 - Euclidean distance.
 - Binary instance space is Hamming distance (number of feature values that differ)
 - For text, cosine similarity of tf.idf weighted vectors is typically most effective

k-NN: The good and the bad

Good

- No training is necessary
- No feature selection necessary
- Scales well with large number of classes
 - Don't need to train n classifiers for n classes

Bad

- Classes can influence each other
 - Small changes to one class can have ripple effect
- Scores can be hard to convert to probabilities
- Can be more expensive at test time
- "Model" is all of your training examples which can be large

Bias vs. variance

- Another way to think about it:
 - Generalizability vs. Precision
- Consider asking a botanist: Is an object a tree?
 - High variance, low bias
 - Botanist who memorizes
 - Will always say "no" to new object (e.g., different # of leaves)
 - Low variance, high bias
 - Lazy botanist
 - Says "yes" if the object is green
 - You want the middle ground

k-NN vs. Naive Bayes

How do k-NN and NB sit on the variance/bias plane?

- k-NN has high variance and low bias.
 - Infinite memory
- NB has low variance and high bias.
 - Decision surface has to be linear (hyperplane see later)

Bias vs. variance: Choosing the correct model capacity

Which separating line should we use?

Separation by Hyperplanes

- A strong high-bias assumption is *linear separability*:
 - in 2 dimensions, can separate classes by a line
 - in higher dimensions, need hyperplanes

Lots of linear classifiers

- Many common text classifiers are linear classifiers
 - Naïve Bayes
 - Perceptron
 - Rocchio
 - Logistic regression
 - Support vector machines (with linear kernel)
 - Linear regression
- Despite this similarity, noticeable performance difference

How might algorithms differ?

Which Hyperplane?

Which Hyperplane?

Which examples are important?

Which examples are important?

Which examples are important?

Dealing with noise

linearly separable?

A nonlinear problem

- A linear classifier like Naïve Bayes does badly on this task
- k-NN will do very well (assuming enough training data)

A nonlinear problem

For text applications non-linear methods often do not perform better than linear

High Dimensional Data

- Pictures like we've seen are misleading!
- Documents are zero along almost all axes
- Most document pairs are very far apart (i.e., not strictly orthogonal, but only share very common words and a few scattered others)
- In classification terms: often document sets are separable, for most any classification
- This is part of why linear classifiers are quite successful in this domain

Dealing with multiple classes

Scenarios

- Document can belong to zero or more classes
- Document must belong to exactly one class
- How can we do this?

 Build a separator between each class and its complementary set (docs from all other classes).

 Build a separator between each class and its complementary set (docs from all other classes).

 Build a separator between each class and its complementary set (docs from all other classes).

- Given a test doc, evaluate it for membership in each class with each binary classifier
- Assign document to class with:
 - maximum score
 - maximum confidence
 - maximum probability
 - threshold of the above
- Why different from multiclass/ any of classification?

