Image Processing

Empirical Evaluation of Dissimilarity Measures for Color and Texture

Jan Puzicha, Joachim M. Buhmann, Yossi Rubner & Carlo Tomasi

David Kauchak

cs160

Fall 2009
Administrative

- 11/4 class project discussion
 - project proposal draft due
- 11/5 4:15pm Rose Hill Theatre
- CS Lunch today
Image processing

- Image processing
- Computer vision
 - http://cseweb.ucsd.edu/classes/sp09/cse252b/
- CVPR
Text retrieval

- What was the key problem we needed to solve for text retrieval?

$$\text{sim}(\text{query}, \text{document}) = ?$$
The Problem: Image Similarity

\[\text{sim}(, ,) = ? \]
Where does this problem arise in computer vision?

- Image Classification
- Image Retrieval
- Image Segmentation
Classification
Retrieval

Segmentation

http://vizlab.rutgers.edu/~comanici/segm_images.html
How is an image represented?
How is an image represented?

- images are made up of pixels
- for a color image, each pixel corresponds to an RGB value (i.e. three numbers)
Image file formats

- BitMaP
- JPEG
- TIFF
- Gif
- Png
- ...

Bitmap
JPEG Compression Process

1. Image
2. Take 8x8 Pixel Blocks
3. Discrete Cosine Transform
4. Quantizer
5. Binary Encoder
JPEG Compression Process

1. Image
2. Take 8x8 Pixel Blocks
3. Discrete Cosine Transform
4. Quantizer
5. Binary Encoder
JPEG Compression Process

Image → Take 8x8 Pixel Blocks → Discrete Cosine Transform → Quantizer → Binary Encoder
JPEG Compression Process

Quantizer: Weights the various spectral coefficients according to their importance, with respect to the human visual system.
JPEG Compression
Image features
Color

Which is more similar?

L*a*b* was designed to be uniform in that perceptual “closeness” corresponds to Euclidean distance in the space.
\(L^*a^*b^* \)

L – lightness (white to black)

a – red-greenness

b – yellowness-blueness
L*a*b*
Texture

How is texture different than color?
Texture

- Texture is not pointwise like color
- Texture involves a local neighborhood

How can we capture texture?
How did we capture audio texture?
Gabor Filters

- Gabor filters are Gaussians modulated by sinusoids
- They can be tuned in both the scale (size) and the orientation
- A filter is applied to a region and is characterized by some feature of the energy distribution (often mean and standard deviation)
- Similar idea to wavelets (Gabor wavelet)!
Examples of Gabor Filters

Scale: 3 at 72°

Scale: 4 at 108°

Scale: 5 at 144°
Gabor filters

What would the response look like to a vertical filter?
Gabor filters
Features

For each pixel:
- set of color features
- set of texture features (i.e. responses to different filters)
- ...

any problem?
Features

For each pixel:
- set of color features
- set of texture features (i.e. responses to different filters)
- ...

- Lots of features!
- Extremely sparse
- Features are position dependent

Ideas?
One approach: histograms

- Examine the distribution of features, rather than the features themselves
- General purpose (i.e. any distribution of features)
- Resilient to variations (shadowing, changes in illumination, shading, etc.)
- Can use previous work in statistics, etc.
Histogram Example
Cumulative Histogram

Normal Histogram

Cumulative Histogram
Similarity Measures Using the Histograms

Need to quantify how similar two histograms are
Heuristic Histogram Distances

- Minkowski-form distance L_p

\[D(I,J) = \left(\sum_i |I_i - J_i|^p \right)^{1/p} \]

- Special cases:
 - L_1: absolute, cityblock, or Manhattan distance
 - L_2: Euclidian distance
 - L_{∞}: Maximum value distance
More heuristic distances

- Weighted-Mean-Variance (WMV)

\[D^r(I, J) = \frac{|\mu_r(I) - \mu_r(J)|}{|\sigma(\mu_r)|} + \frac{|\sigma_r(I) - \sigma_r(J)|}{|\sigma(\sigma_r)|} \]

- Only includes minimal information about distribution
Cumulative Difference Example

Histogram 1

Histogram 2

Difference

K-S =

CvM = \sum \frac{(x_i - \overline{x})^2}{s^2} + \frac{(y_i - \overline{y})^2}{s^2} + \frac{(z_i - \overline{z})^2}{s^2} + \frac{(t_i - \overline{t})^2}{s^2}
How would you test the performance of these algorithms?

- Three tasks
 - classification
 - retrieval
 - segmentation
Data Set: Color

- Randomly chose 94 images from set of 2000
 - 94 images represent separate classes
- Randomly select disjoint set of pixels from the images
 - Set size of 4, 8, 16, 32, 64 pixels
 - 16 disjoint samples per set per image
Data Set: Texture

- Brodatz album
 - Collection of wide range of texture (e.g. cork, lawn, straw, pebbles, sand, etc.)
- Each image is considered a class (as in color)
- Extract sets of 16 non-overlapping blocks
 - sizes 8x8, 16x16, ..., 256x256
How can we use similarity for classification?

k-Nearest Neighbor classifier is used

- Nearest Neighbor classification: given a collection of labeled points S and a query point \(q \), what point belonging to S is closest to \(q \)?
- k nearest is a majority vote of the k closest points
Results: Classification, color data set

sample size
Results: Classification, texture data set

sample size
Results: Image Retrieval
Setup: Segmentation

- 100 images
- Each image consists of 5 different textures
Setup: Segmentation

- How can we solve this problem using our similarity measures?
Setup: Segmentation (cont.)

- Image is divided into 16384 sites (128 x 128 grid)
- A histogram is calculated for each site
- Each site histogram is then compared with 80 randomly selected sites
- Image sites with high average similarity are then grouped
Results: Segmentation
Something fun…

Cyberchondria
Homework for next time…

- Spend 15 minutes playing with three different image retrieval systems
 - What works well?
 - What doesn’t work well?
 - Anything interesting you noticed?

- You won’t hand anything in, but we’ll start class on Monday with a discussion of the systems