
Web Crawling

David Kauchak

cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture14-Crawling.ppt

Administrative

  Midterm

  Collaboration on homeworks

Possible topics with equations
for midterm

  Note this is not necessarily a complete list, but
are ones that are relevant
  Heaps and Zipf’s law (you don’t need to know the

exact equations, but you should understand the
relationships they describe)

  Posting file compression

  Tf-Idf
  log and boolean term normalization

  idf term weighting

  cosign length normalization

  Evaluation
  Precision/recall
  F1

  MAP

MAP

System 1 System 2

= relevant

Which is better?

MAP

System 1 System 2

- MAP is calculate for ALL relevant documents
-  If a relevant document is not in the result set
it is given a precision of 0

1/1

2/4
3/5

4/7

(1+2/4+3/5+4/7) / 4
= 0.67

1/1

(1+0+0+0) / 4
= 0.25

Duplicate detection

Basic crawler

  Begin with “seed” URLs in the queue

  Get a URL from the queue
  Fetch the page

  Parse the page and extract URLs it points to
  Place the extracted URLs on a queue

Web crawlers

  Crawling is similar at a high-level to
traditional graph search

  How is it different?
  Latency/bandwidth issues (we have to actually

fetch each node)

  Malicious pages
  Spam

  Spider traps

  Politeness concerns – don’t hit the same
server too frequently

  Duplicate pages
  Web is not fully connected

Fetching web pages

  Given a URL, we first need to fetch the actual web
page

  What steps need to happen?
  Find the web server

  similar to “call Dave Kauchak” – we need to know how to
contact the web server

  Computers on the web are specified by IP addresses

  DNS (domain name service) offers a directory lookup from
domain to IP address

  DNS lookup is distributed and can be slow

www.cs.pomona.edu/classes/cs160/index.html

domain name file location

Fetching web pages

  Given a URL, we first need to fetch the actual web
page

  What steps need to happen?
  Contact the web server and download the file

  A web server is just a computer connected to the internet
listening on port 80 (or sometimes 8080) for HTTP
requests

  Connect to the server and request the particular page

www.cs.pomona.edu/classes/cs160/index.html

domain name file location

GET /index.html HTTP/1.1
Host: www.yahoo.com
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Parse web page and extract URLs

  Parsing the web page
  Deal with many of the issues we talked about

previously, like encoding, etc.

  Full HTML parsing can be a pain since web
browsers are fault tolerant

  Extract URLs
  Handle “relative” URLs, e.g. “home.html”

  Remove duplicate URLs

  Besides extracting the URLs/links for
crawling purposes, is there anything else we
need them for?

Connectivity Server
[CS1: Bhar98b, CS2 & 3: Rand01]

  Support for fast queries on the web graph
  Which URLs point to a given URL?
  Which URLs does a given URL point to?

Stores the mappings in memory

  Applications
  Crawl control

  Web graph analysis
  Connectivity, crawl optimization

  Link analysis

Polite web crawlers

  A web crawler has few constraints on which
pages it can visit, but it must adhere to the
to politeness policies
  Never hit the same web server (generally IP)

more frequently than once a second

  Only one connection open to a giver web
server at a time

  robots.txt

Robots.txt

  Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994
  www.robotstxt.org/wc/norobots.html

  Website announces its request on what can(not)
be crawled
  For a domain, create a file Domain/robots.txt

  This file specifies access restrictions

Robots.txt example

  No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Even Google has a robots.txt 

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Queue

URL
filter

robots
filters

Fetch

Web crawler scale

  The biggest challenges for web crawlers is
dealing with the size of the web

  How many web pages per second would we
need to download to obtain 1 billion web
pages in a month?
  30 d * 24 h * 60 m * 60 s = 2,592,000

  1,000,000,000/2,592,000 = 385 pages/sec

  Have to be multithreaded/multi-computer

  Logistics become trickier

Web crawler scale issues

  What complications does this create?
  Can’t hit same web server

  Often pages point to pages on the same server

  Can’t just wait… need to keep servers busy
  Cache robots.txt

  Distributed computing
  Duplicate URL detection

  Keeping track of who’s doing what
  Cache DNS lookup since it’s slow

  The URL queue becomes an important data
structure to try and prioritize things appropriately
  Can’t just do a priority queue!

URL frontier: Mercator scheme

Prioritizer

Biased front queue selector
Back queue router

Back queue selector

K front queues

B back queues
Single host on each

URLs

Crawl thread requesting URL

manages
URL priority

enforce
“politeness”

Priority

  Prioritizer assigns to URL an integer
priority between 1 and K
  Appends URL to corresponding queue

  Heuristics for assigning priority?
  Refresh rate sampled from previous

crawls
  Importance

  Application-specific (e.g., “crawl news
sites more often”)

Resources

  IIR Chapter 20
  Mercator: A scalable, extensible web crawler

(Heydon et al. 1999)

  A standard for robot exclusion
  The WebGraph framework I: Compression

techniques (Boldi et al. 2004)

Cool search engines

  What do you think will be the most important feature(s) in next-
generation search algorithms?

  Is it better to have a broad, general search engine or one that is
tailored to your needs?

  What new markets can be explored using a search engine?

  Some of these search engines are niche-specific sites and others
are search aggregators. Is web search diverging in the direction of
many topic-specific sites or converging to one large find-everything
site? Is one of these better? What should we be aiming for?

  What are the benefits of live updating searches (Collecta) vs.
previously indexed content (Google)?

  How do you think Collecta is able to find results so quickly?

  The article mentions “inserting a human element into search.”
What exactly does this mean? How can a web search include
human power? Is that useful?

