Web Crawling

David Kauchak
cs160
Fall 2009

adapted from:
http://www.stanford.edu/class/cs276/handouts/lecture14-Crawling.ppt

Administrative

M Midterm
s Collaboration on homeworks

Possible topics with equations
for midterm

= Note this is not necessarily a complete list, but
are ones that are relevant

= Heaps and Zipf’s law (you don’t need to know the
exact equations, but you should understand the
relationships they describe)

= Posting file compression
« Tf-Idf

= log and boolean term normalization
= idf term weighting
= cosign length normalization

=« Evaluation

=« Precision/recall
= F1
= MAP

MAP

System 1 System 2

= relevant

0000 0CC00
000000000

Which is better?

MAP

System 1 System 2

<~ 1/1] <~ 1/1
) /) /
))

« 2/4 = O

<— 3/5 o,
))

<— 4/7)
))
@ (1+2/4+3/5+4/7)/4 @ (1+0+0+0) / 4
@ =0.67 @ =0.25

- MAP is calculate for ALL relevant documents
- If a relevant document is not in the result set
it is given a precision of O

Duplicate detection

Basic crawler

9‘

= Begin with “seed” URLs in the queue
= Get a URL from the queue
= Fetch the page
= Parse the page and extract URLs it points to
= Place the extracted URLs on a queue

Web crawlers

= Crawling is similar at a high-level to
traditional graph search

= How is it different?

» Latency/bandwidth issues (we have to actually
fetch each node)

» Malicious pages
= Spam
« Spider traps
» Politeness concerns - don’t hit the same
server too frequently
» Duplicate pages
= Web is not fully connected

Fetching web pages

= Given a URL, we first need to fetch the actual web
page

www.cs.pomona.edu/classes/cs160/index.html
\ J | J
| |

domain name file location

= What steps need to happen?

» Find the web server

= similar to “call Dave Kauchak” - we need to know how to
contact the web server

= Computers on the web are specified by IP addresses

= DNS (domain name service) offers a directory lookup from
domain to IP address

= DNS lookup is distributed and can be slow

Fetching web pages

= Given a URL, we first need to fetch the actual web

page
www.cs.pomona.edu/classes/cs160/index.html
\ J | J
| |
domain name file location

= What steps need to happen?

= Contact the web server and download the file

= A web server is just a computer connected to the internet
listening on port 80 (or sometimes 8080) for HTTP

requests
= Connect to the server and request the particular page

GET /index.html| HTTP/1.1
Host: www.yahoo.com
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Parse web page and extract URLs

= Parsing the web page

» Deal with many of the issues we talked about
previously, like encoding, etc.

» Full HTML parsing can be a pain since web
browsers are fault tolerant

= Extract URLs
» Handle “relative” URLs, e.g. “home.html”
» Remove duplicate URLs

= Besides extracting the URLs/links for
crawling purposes, is there anything else we
need them for?

Connectivity Server
[CST: Bhar98b, CS2 & 3: RandO1]
- 0 0 00—
= Support for fast queries on the web graph
= Which URLs point to a given URL?
= Which URLs does a given URL point to?

Stores the mappings in memory

= Applications
= Crawl control
« Web graph analysis

= Connectivity, crawl optimization
» Link analysis

Polite web crawlers

= A web crawler has few constraints on which
pages it can visit, but it must adhere to the
to politeness policies

» Never hit the same web server (generally IP)
more frequently than once a second

= Only one connection open to a giver web
server at a time

s robots.txt

Robots.txt

= Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994
= Wwww.robotstxt.org/wc/norobots.html

= Website announces its request on what can(not)
be crawled
s« For a domain, create a file Domain/robots.txt
= This file specifies access restrictions

Robots.txt example

= No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine”:

User—agent: *

Disallow: /yoursite/temp/

User—agent: searchengine

Disallow:

Even Google has a robots.txt ©

Basic crawl architecture

DNS

Fetch

Parse

Doc obot URL
FP’s filters set
Content URL BEE
seen? filter)

elim

URL Queue

Web crawler scale

= The biggest
dealing with t

= How many we
need to down

nallenges for web crawlers is
ne size of the web

O pages per second would we

oad to obtain 1 billion web

pages in a month?

» 30d*24h*60m *60s=2,592,000

« 1,000,000,000/2,592,000 = 385 pages/sec
= Have to be multithreaded/multi-computer
= Logistics become trickier

Web crawler scale issues

= What complications does this create?

» Can’t hit same web server
=« Often pages point to pages on the same server
« Can’t just wait... need to keep servers busy
= Cache robots.txt

» Distributed computing
= Duplicate URL detection
= Keeping track of who’s doing what
= Cache DNS lookup since it’s slow
= The URL queue becomes an important data
structure to try and prioritize things appropriately

» Can’t just do a priority queue!

URL frontier: Mercator scheme

URLs
)
Prioritizer
mandges K front queues
URL priority s
Biased front queue selector

Back queue router
enforce B back queues
“politeness” Single host on each

Back queue selector

Crawl thread |lequesting URL

Priority

= Prioritizer assigns to URL an integer
priority between 1 and K

= Appends URL to corresponding queue
= Heuristics for assigning priority?

= Refresh rate sampled from previous
crawls

= Importance

» Application-specific (e.g., “crawl news
sites more often”)

Resources
-

= [IR Chapter 20
s Mercator: A scalable, extensible web crawler
(Heydon et al. 1999)

s A standard for robot exclusion

= The WebGraph framework I: Compression
techniques (Boldi et al. 2004)

Cool search engines

What do you think will be the most important feature(s) in next-
generation search algorithms?

Is it better to have a broad, general search engine or one that is
tailored to your needs?

What new markets can be explored using a search engine?

Some of these search engines are niche-specific sites and others
are search aggregators. Is web search diverging in the direction of
many topic-specific sites or converging to one large find-everything
site? Is one of these better? What should we be aiming for?

What are the benefits of live updating searches (Collecta) vs.
previously indexed content (Google)?

How do you think Collecta is able to find results so quickly?

The article mentions “inserting a human element into search.”
What exactly does this mean? How can a web search include
human power? Is that useful?

