
Web Crawling

David Kauchak

cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture14-Crawling.ppt

Administrative

  Midterm

  Collaboration on homeworks

Possible topics with equations
for midterm

  Note this is not necessarily a complete list, but
are ones that are relevant
  Heaps and Zipf’s law (you don’t need to know the

exact equations, but you should understand the
relationships they describe)

  Posting file compression

  Tf-Idf
  log and boolean term normalization

  idf term weighting

  cosign length normalization

  Evaluation
  Precision/recall
  F1

  MAP

MAP

System 1 System 2

= relevant

Which is better?

MAP

System 1 System 2

- MAP is calculate for ALL relevant documents
-  If a relevant document is not in the result set
it is given a precision of 0

1/1

2/4
3/5

4/7

(1+2/4+3/5+4/7) / 4
= 0.67

1/1

(1+0+0+0) / 4
= 0.25

Duplicate detection

Basic crawler

  Begin with “seed” URLs in the queue

  Get a URL from the queue
  Fetch the page

  Parse the page and extract URLs it points to
  Place the extracted URLs on a queue

Web crawlers

  Crawling is similar at a high-level to
traditional graph search

  How is it different?
  Latency/bandwidth issues (we have to actually

fetch each node)

  Malicious pages
  Spam

  Spider traps

  Politeness concerns – don’t hit the same
server too frequently

  Duplicate pages
  Web is not fully connected

Fetching web pages

  Given a URL, we first need to fetch the actual web
page

  What steps need to happen?
  Find the web server

  similar to “call Dave Kauchak” – we need to know how to
contact the web server

  Computers on the web are specified by IP addresses

  DNS (domain name service) offers a directory lookup from
domain to IP address

  DNS lookup is distributed and can be slow

www.cs.pomona.edu/classes/cs160/index.html

domain name file location

Fetching web pages

  Given a URL, we first need to fetch the actual web
page

  What steps need to happen?
  Contact the web server and download the file

  A web server is just a computer connected to the internet
listening on port 80 (or sometimes 8080) for HTTP
requests

  Connect to the server and request the particular page

www.cs.pomona.edu/classes/cs160/index.html

domain name file location

GET /index.html HTTP/1.1
Host: www.yahoo.com
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Parse web page and extract URLs

  Parsing the web page
  Deal with many of the issues we talked about

previously, like encoding, etc.

  Full HTML parsing can be a pain since web
browsers are fault tolerant

  Extract URLs
  Handle “relative” URLs, e.g. “home.html”

  Remove duplicate URLs

  Besides extracting the URLs/links for
crawling purposes, is there anything else we
need them for?

Connectivity Server
[CS1: Bhar98b, CS2 & 3: Rand01]

  Support for fast queries on the web graph
  Which URLs point to a given URL?
  Which URLs does a given URL point to?

Stores the mappings in memory

  Applications
  Crawl control

  Web graph analysis
  Connectivity, crawl optimization

  Link analysis

Polite web crawlers

  A web crawler has few constraints on which
pages it can visit, but it must adhere to the
to politeness policies
  Never hit the same web server (generally IP)

more frequently than once a second

  Only one connection open to a giver web
server at a time

  robots.txt

Robots.txt

  Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994
  www.robotstxt.org/wc/norobots.html

  Website announces its request on what can(not)
be crawled
  For a domain, create a file Domain/robots.txt

  This file specifies access restrictions

Robots.txt example

  No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Even Google has a robots.txt

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Queue

URL
filter

robots
filters

Fetch

Web crawler scale

  The biggest challenges for web crawlers is
dealing with the size of the web

  How many web pages per second would we
need to download to obtain 1 billion web
pages in a month?
  30 d * 24 h * 60 m * 60 s = 2,592,000

  1,000,000,000/2,592,000 = 385 pages/sec

  Have to be multithreaded/multi-computer

  Logistics become trickier

Web crawler scale issues

  What complications does this create?
  Can’t hit same web server

  Often pages point to pages on the same server

  Can’t just wait… need to keep servers busy
  Cache robots.txt

  Distributed computing
  Duplicate URL detection

  Keeping track of who’s doing what
  Cache DNS lookup since it’s slow

  The URL queue becomes an important data
structure to try and prioritize things appropriately
  Can’t just do a priority queue!

URL frontier: Mercator scheme

Prioritizer

Biased front queue selector
Back queue router

Back queue selector

K front queues

B back queues
Single host on each

URLs

Crawl thread requesting URL

manages
URL priority

enforce
“politeness”

Priority

  Prioritizer assigns to URL an integer
priority between 1 and K
  Appends URL to corresponding queue

  Heuristics for assigning priority?
  Refresh rate sampled from previous

crawls
  Importance

  Application-specific (e.g., “crawl news
sites more often”)

Resources

  IIR Chapter 20
  Mercator: A scalable, extensible web crawler

(Heydon et al. 1999)

  A standard for robot exclusion
  The WebGraph framework I: Compression

techniques (Boldi et al. 2004)

Cool search engines

  What do you think will be the most important feature(s) in next-
generation search algorithms?

  Is it better to have a broad, general search engine or one that is
tailored to your needs?

  What new markets can be explored using a search engine?

  Some of these search engines are niche-specific sites and others
are search aggregators. Is web search diverging in the direction of
many topic-specific sites or converging to one large find-everything
site? Is one of these better? What should we be aiming for?

  What are the benefits of live updating searches (Collecta) vs.
previously indexed content (Google)?

  How do you think Collecta is able to find results so quickly?

  The article mentions “inserting a human element into search.”
What exactly does this mean? How can a web search include
human power? Is that useful?

