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Administrative 

  CS lunch today! 
  Unique hw5 

  reading 
  course feedback 

  Schedule 



Boolean queries 

  c OR a AND f 
  a AND f OR c 

c b d 

e d c  

b d f 

a f e 



Outline 

  Brief overview of the web 

  Web Spam 

  Estimating the size of the web 

  Detecting duplicate pages 



Brief (non-technical) history 

  Early keyword-based engines 
  Altavista, Excite, Infoseek, Inktomi, ca. 1995-1997 

  Sponsored search ranking: Goto.com (morphed 
into Overture.com → Yahoo!) 
  Your search ranking depended on how much you 

paid 
  Auction for keywords: casino was expensive! 



Brief (non-technical) history 

  1998+: Link-based ranking pioneered by Google 
  Blew away all early engines save Inktomi 
  Great user experience in search of a business 

model 
  Meanwhile Goto/Overture’s annual revenues were 

nearing $1 billion 
  Result: Google added paid-placement “ads” to 

the side, independent of search results 
  Yahoo followed suit, acquiring Overture (for paid 

placement) and Inktomi (for search) 



Why did Google win? 

  Relevance/link-based 
  Simple UI 
  Hardware – used commodity parts 

  inexpensive 
  easy to expand 
  fault tolerance through redundancy 

  What’s wrong (from the search engine’s 
standpoint) of having a cost-per-click (CPC) 
model and ranking ads based only on CPC? 



Web search basics 

The Web 

Ad indexes 

Web spider 

Indexer 

Indexes 

Search 

User 



User needs/queries 

  Researchers/search engines often categorize 
user needs/queries into different types 

  For example…? 



User Needs 
  Need [Brod02, RL04] 

  Informational – want to learn about something (~40%) 

  Navigational – want to go to that page (~25%) 

  Transactional – want to do something (web-mediated) (~35%) 
  Access a  service 

  Downloads  

  Shop 

  Gray areas 
  Find a good hub 
  Exploratory search “see what’s there”  



How far do people look for results? 

(Source: iprospect.com WhitePaper_2006_SearchEngineUserBehavior.pdf) 



Users’ empirical evaluation of results 
  Quality of pages varies widely 

  Relevance is not enough 
  Other desirable qualities (non IR!!) 

  Content: Trustworthy, diverse, non-duplicated, well maintained 
  Web readability: display correctly & fast 
  No annoyances: pop-ups, etc 

  Precision vs. recall 
  On the web, recall seldom matters 
  Recall matters when the number of matches is very small 

  What matters 
  Precision at 1? Precision above the fold? 
  Comprehensiveness – must be able to deal with obscure queries 

  User perceptions may be unscientific, but are 
significant over a large aggregate 



The Web document collection 
  No design/co-ordination 
  Content includes truth, lies, obsolete 

information, contradictions …  
  Unstructured (text, html, …), semi-

structured (XML, annotated photos), 
structured (Databases)… 

  Financial motivation for ranked results 
  Scale much larger than previous text 

collections … but corporate records 
are catching up 

  Growth – slowed down from initial 
“volume doubling every few months” 
but still expanding 

  Content can be dynamically 
generated 

The Web 



Web Spam 

http://blog.lib.umn.edu/wilsper/informationcentral/spam.jpg 



The trouble with sponsored search … 

  It costs money.  What’s the alternative? 
  Search Engine Optimization: 

  “Tuning” your web page to rank highly in the 
algorithmic search results for select keywords 

  Alternative to paying for placement 
  Intrinsically a marketing function 

  Performed by companies, webmasters and 
consultants (“Search engine optimizers”) for 
their clients 

  Some perfectly legitimate, some very shady 



Simplest forms 

  First generation engines relied heavily on tf/idf  
  What would you do as an SEO? 
  SEOs responded with dense repetitions of chosen 

terms 
  e.g., maui resort maui resort maui resort  
  Often, the repetitions would be in the same color as the 

background of the web page 
  Repeated terms got indexed by crawlers 
  But not visible to humans on browsers 

Pure word density cannot  
be trusted as an IR signal 



Variants of keyword stuffing 

  Misleading meta-tags, excessive repetition 
  Hidden text with colors, style sheet tricks, 

etc. 

Meta-Tags =  
“… London hotels, hotel, holiday inn, hilton, discount, 
booking, reservation, sex, mp3, britney spears, viagra, …” 



Spidering/indexing 

The Web 

Web spider 

Indexer 

Indexes 

Any way we can take 
advantage of this system? 



Cloaking 

  Serve fake content to search engine spider 

Is this a Search 
Engine spider? 

Y 

N

SPAM 

Real 
Doc Cloaking 



More spam techniques 

  Doorway pages 
  Pages optimized for a single keyword that re-direct 

to the real target page 
  Link spamming 

  Mutual admiration societies, hidden links, awards – 
more on these later 

  Domain flooding: numerous domains that point or re-
direct to a target page 

   Robots 
  Fake query stream – rank checking programs 

  “Curve-fit” ranking programs of search engines 



The war against spam 
  Quality signals - Prefer 

authoritative pages based 
on: 
  Votes from authors (linkage 

signals) 
  Votes from users (usage 

signals) 

   Policing of URL 
submissions 
  Anti robot test  

   Limits on meta-keywords 
   Robust link analysis 

  Ignore statistically implausible 
linkage (or text) 

  Use link analysis to detect 
spammers (guilt by 
association) 

  Spam recognition by 
machine learning 
  Training set based on 

known spam 
  Family friendly filters 

  Linguistic analysis, general 
classification techniques, 
etc. 

  For images: flesh tone 
detectors, source text 
analysis, etc. 

  Editorial intervention 
  Blacklists 
  Top queries audited 
  Complaints addressed 
  Suspect pattern detection 



More on spam 

  Web search engines have policies on SEO 
practices they tolerate/block 
  http://help.yahoo.com/help/us/ysearch/index.html  
  http://www.google.com/intl/en/webmasters/  

  Adversarial IR: the unending (technical) battle 
between SEO’s and web search engines 

  Research  http://airweb.cse.lehigh.edu/ 



Size of the web 

http://www.stormforce31.com/wximages/www.jpg 



What is the size of the web? 
  7,452,502,600,001 pages (as of yesterday) 
  The web is really infinite 

  Dynamic content, e.g., calendar  
  Soft 404: www.yahoo.com/<anything> is a valid 

page 
  What about just the static web… issues? 

  Static web contains syntactic duplication, mostly 
due to mirroring (~30%) 

  Some servers are seldom connected 
  What do we count?  A url? A frame? A section? A 

pdf document?  An image? 



Who cares about the size of the web? 

  It is an interesting question, but beyond that, who 
cares and why? 

  Media, and consequently the user 
  Search engine designer (crawling, indexing) 
  Researchers 



What can we measure? 

Besides absolute size, what else might we measure? 

  Users interface is through the search engine 
  Proportion of the web a particular search engine indexes 
  The size of a particular search engine’s index 
  Relative index sizes of two search engines 

Challenges with these approaches? 

Biggest one: search engines don’t like to let  
people know what goes on under the hood 



Search engines as a black box 

  Although we can’t ask how big a search engine’s 
index is, we can often ask questions like “does a 
document exist in the index?” 

search 
engine 

doc identifying 
query 

? 
search results 
for doc 



Proportion of the web indexed 

  We can ask if a document is in an index 
  How can we estimate the proportion indexed by a 

particular search engine? 

web 

random 
sample 

search 
engine 

proportion of 
sample in index 



Size of index A relative to index B 

web 

random 
sample 

engine 
A 

proportion of 
sample in index 

engine 
B 



Sampling URLs 

  Both of these questions require us to have a random 
set of pages (or URLs) 

  Problem: Random URLs are hard to find!  
  Ideas? 
  Approach 1: Generate a random URL contained in a 

given engine 
  Suffices for the estimation of relative size 

  Approach 2: Random pages/ IP addresses 
  In theory: might give us a true estimate of the size of the web (as 

opposed to just relative sizes of indexes) 



Random URLs from search engines 

  Issue a random query to the search engine 
  Randomly generate a query from a lexicon and 

word probabilities (generally focus on less 
common words/queries) 

  Choose random searches extracted from a query 
log (e.g. all queries from Pomona College) 

  From the first 100 results, pick a random page/
URL 



Things to watch out for 

  Biases induced by random queries  
  Query Bias: Favors content-rich pages in the language(s) of the 

lexicon 
  Ranking Bias: Use conjunctive queries & fetch all 

  Checking Bias: Duplicates, impoverished pages omitted 

  Malicious Bias: Sabotage by engine   
  Operational Problems: Time-outs, failures, engine 

inconsistencies, index modification 
  Biases induced by query log 

  Samples are correlated with source of log 



Random IP addresses 

xxx.xxx.xxx.xxx 

Generate  
random IP 

check if there is 
a web server at  
that IP 

collect pages 
from server 

randomly pick 
a page/URL 



Random IP addresses 

  [Lawr99] Estimated 2.8 million IP addresses running 
crawlable web servers (16 million total) from 
observing 2500 servers 

  OCLC using IP sampling found 8.7 M hosts in 2001 
  Netcraft [Netc02] accessed 37.2 million hosts in July 

2002 



Random walks 

  View the Web as a directed graph 
  Build a random walk on this graph 

  Includes various “jump” rules back to visited sites 
  Does not get stuck in spider traps! 
  Can follow all links! 

  Converges to a stationary distribution 
  Must assume graph is finite  and independent of the walk.  
  Conditions are not satisfied (cookie crumbs, flooding) 
  Time to convergence not really known 

  Sample from stationary distribution of walk 
  Use the “strong query” method to check coverage by 

SE 



Conclusions 

  No sampling solution is perfect 
  Lots of new ideas ... 
  ....but the problem is getting harder 
  Quantitative studies are fascinating and a 

good research problem 



Duplicate detection 

http://rlv.zcache.com/cartoon_man_with_balled_fist_postcard-p239288482636625726trdg_400.jpg 



Duplicate documents 

  The web is full of duplicated content 
  Redundancy/mirroring 
  Copied content 

  Do we care? 
  How can we detect duplicates? 
  Hashing 

  Hash each document 
  Compares hashes 
  For those that are equal, check if the content is 

equal 



Duplicate? 



Near duplicate documents 

  Many, many cases of near duplicates 
  E.g., last modified date the only difference 

between two copies of a page 
  A good hashing function specifically tries 

not to have collisions 
  Ideas? 

  Locality sensitive hashing – (http://
www.mit.edu/~andoni/LSH/) 

  Similarity – main challenge is efficiency! 



Computing Similarity 
  We could use edit distance, but way too slow 
  What did we do for spelling correction? 
  compare word n-gram (shingles) overlap 

  a rose is a rose is a rose →  
      a_rose_is_a  
          rose_is_a_rose 
                   is_a_rose_is  

     a_rose_is_a 
  Use Jaccard Coefficient to measure the similarity between 

documents (A and B)/(A or B) 



N-gram intersection 

  Computing exact set intersection of n-grams 
between all pairs of documents is expensive/
intractable 

  How did we solve the efficiency problem for 
spelling correction? 
  Indexed words by character n-grams 
  AND query of the character n-grams in our query 

word 
  Will this work for documents? 
  Number of word n-grams for a document is too 

large! 



Efficient calculation of JC 

  Use a hash function that maps an n-gram 
to a 64 bit number 

Doc 
A  

n-grams 

64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 

Doc 
A  

64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 

Jaccard 
Coefficient 



Efficient calculation of JC 

  Use a hash function that maps an n-gram 
to a 64 bit number 

Doc 
A  

n-grams 

64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 

Doc 
A  

64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 

What if we just compared 
smallest one of each? 



Efficient calculation of JC 

  Use a hash function that maps an n-gram 
to a 64 bit number 

Doc 
A  

n-grams 

64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 

Doc 
A  

64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 
64 bit # 

-  Apply a permutation to 
each 64 bit number 
-  Compare smallest 
values 
-  Repeat some number 
of times (say 200) 



Efficient JC 

Document 1 

264 

264 

264 

264 

Start with 64-bit n-grams 

Permute on the number line 

with πi 

Pick the min value 



Test if Doc1 = Doc2 

Document 1 Document 2 

264 

264 

264 

264 

264 

264 

264 

264 

Are these equal? 

A B 



Test if Doc1 = Doc2 

Document 1 Document 2 

264 

264 

264 

264 

264 

264 

264 

264 
A B 

The minimum values after the permutations will be equal 
with probability =      
    Size_of_intersection / Size_of_union 



Claim… 

Document 1 Document 2 

264 

264 

264 

264 

264 

264 

264 

264 
B A 

- Repeat this, say 200 times, with different permutations 
-  Measure the number of times they’re equal 
-  This is a reasonable estimate for the JC 



All signature pairs 

  Now we have an extremely efficient method for 
estimating a Jaccard coefficient for a single pair 
of documents. 

  But we still have to estimate N2 coefficients 
where N is the number of web pages. 
  Still slow 

  Need to reduce the set of options 
  locality sensitive hashing (LSH) 
  sorting (Henzinger 2006) 



Cool search engines 
  What do you think will be the most important feature(s) in next-

generation search algorithms? 
  Is it better to have a broad, general search engine or one that is tailored 

to your needs? 
  What new markets can be explored using a search engine? 
  Some of these search engines are niche-specific sites and others are 

search aggregators. Is web search diverging in the direction of many 
topic-specific sites or converging to one large find-everything site? Is one 
of these better? What should we be aiming for?  

  What are the benefits of live updating searches (Collecta) vs. previously 
indexed content (Google)? 

  How do you think Collecta is able to find results so quickly?  
  The article mentions “inserting a human element into search.” What 

exactly does this mean? How can a web search include human power? 
Is that useful? 



Set Similarity of sets Ci , Cj 

  View sets as columns of a matrix A; one row for each 
element in the universe.  aij = 1 indicates presence of 
item i  in set j 

   Example 

      

C1   C2 

  0     1 
  1    0 
  1    1        Jaccard(C1,C2) = 2/5 = 0.4 
  0    0 
  1    1 
  0    1 



Key Observation 

  For columns Ci, Cj, four types of rows 
   Ci  Cj 

  A   1   1 
  B   1   0 
  C   0   1 
  D   0   0 

  Overload notation: A = # of rows of type A 
  Claim 



“Min” Hashing 

  Randomly permute rows 
  Hash h(Ci) = index of first row with 1 in column Ci  
  Surprising Property 

  Why? 
  Both are A/(A+B+C) 
  Look down columns Ci, Cj until first non-Type-D row 
  h(Ci) = h(Cj)  type A row 



Min-Hash sketches 

  Pick P random row permutations  
  MinHash sketch 

SketchD = list of P indexes of first rows with 1 in 
column C 

  Similarity of signatures  
  Let sim[sketch(Ci),sketch(Cj)] = fraction of 

permutations where MinHash values agree  
  Observe  E[sim(sig(Ci),sig(Cj))] = Jaccard(Ci,Cj)  



Example 

      C1  C2  C3 
R1   1    0    1 
R2   0    1    1 
R3   1    0    0 
R4   1    0    1 
R5   0    1    0 

             Signatures 
                              S1  S2  S3 
Perm 1 = (12345)   1    2    1 
Perm 2 = (54321)   4    5    4 
Perm 3 = (34512)   3    5    4 

             Similarities 
                1-2      1-3      2-3 
Col-Col   0.00    0.50    0.25 
Sig-Sig    0.00    0.67    0.00 



Implementation Trick 

  Permuting universe even once is prohibitive 
  Row Hashing 

  Pick P hash functions hk: {1,…,n}{1,…,O(n)} 
  Ordering under hk gives random permutation of 

rows 

  One-pass Implementation 
  For each Ci and hk, keep “slot” for min-hash value 
  Initialize all slot(Ci,hk) to infinity 
  Scan rows in arbitrary order looking for 1’s 

  Suppose row Rj has 1 in column Ci  
  For each hk,  

  if hk(j) < slot(Ci,hk), then slot(Ci,hk)  hk(j)  



Example 
 C1   C2 

R1  1      0 
R2  0      1 
R3  1      1 
R4  1      0 
R5  0      1 

h(x) = x mod 5 
g(x) = 2x+1 mod 5 

h(1) = 1   1
g(1) = 3   3

h(2) = 2   1
g(2) = 0   3

h(3) = 3   1
g(3) = 2   2

h(4) = 4   1
g(4) = 4   2
h(5) = 0   1
g(5) = 1   2

C1 slots       C2 slots  



Comparing Signatures 

  Signature Matrix S 
  Rows = Hash Functions 
  Columns = Columns 
  Entries = Signatures 

  Can compute – Pair-wise similarity of 
any pair of  signature columns 


