
http://www.flickr.com/photos/30686429@N07/3953914015/in/set-72157622330082619/

Web basics

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture13-webchar.ppt

Administrative

  CS lunch today!
  Unique hw5

  reading
  course feedback

  Schedule

Boolean queries

  c OR a AND f
  a AND f OR c

c b d

e d c

b d f

a f e

Outline

  Brief overview of the web

  Web Spam

  Estimating the size of the web

  Detecting duplicate pages

Brief (non-technical) history

  Early keyword-based engines
  Altavista, Excite, Infoseek, Inktomi, ca. 1995-1997

  Sponsored search ranking: Goto.com (morphed
into Overture.com → Yahoo!)
  Your search ranking depended on how much you

paid
  Auction for keywords: casino was expensive!

Brief (non-technical) history

  1998+: Link-based ranking pioneered by Google
  Blew away all early engines save Inktomi
  Great user experience in search of a business

model
  Meanwhile Goto/Overture’s annual revenues were

nearing $1 billion
  Result: Google added paid-placement “ads” to

the side, independent of search results
  Yahoo followed suit, acquiring Overture (for paid

placement) and Inktomi (for search)

Why did Google win?

  Relevance/link-based
  Simple UI
  Hardware – used commodity parts

  inexpensive
  easy to expand
  fault tolerance through redundancy

  What’s wrong (from the search engine’s
standpoint) of having a cost-per-click (CPC)
model and ranking ads based only on CPC?

Web search basics

The Web

Ad indexes

Web spider

Indexer

Indexes

Search

User

User needs/queries

  Researchers/search engines often categorize
user needs/queries into different types

  For example…?

User Needs
  Need [Brod02, RL04]

  Informational – want to learn about something (~40%)

  Navigational – want to go to that page (~25%)

  Transactional – want to do something (web-mediated) (~35%)
  Access a service

  Downloads

  Shop

  Gray areas
  Find a good hub
  Exploratory search “see what’s there”

How far do people look for results?

(Source: iprospect.com WhitePaper_2006_SearchEngineUserBehavior.pdf)

Users’ empirical evaluation of results
  Quality of pages varies widely

  Relevance is not enough
  Other desirable qualities (non IR!!)

  Content: Trustworthy, diverse, non-duplicated, well maintained
  Web readability: display correctly & fast
  No annoyances: pop-ups, etc

  Precision vs. recall
  On the web, recall seldom matters
  Recall matters when the number of matches is very small

  What matters
  Precision at 1? Precision above the fold?
  Comprehensiveness – must be able to deal with obscure queries

  User perceptions may be unscientific, but are
significant over a large aggregate

The Web document collection
  No design/co-ordination
  Content includes truth, lies, obsolete

information, contradictions …
  Unstructured (text, html, …), semi-

structured (XML, annotated photos),
structured (Databases)…

  Financial motivation for ranked results
  Scale much larger than previous text

collections … but corporate records
are catching up

  Growth – slowed down from initial
“volume doubling every few months”
but still expanding

  Content can be dynamically
generated

The Web

Web Spam

http://blog.lib.umn.edu/wilsper/informationcentral/spam.jpg

The trouble with sponsored search …

  It costs money. What’s the alternative?
  Search Engine Optimization:

  “Tuning” your web page to rank highly in the
algorithmic search results for select keywords

  Alternative to paying for placement
  Intrinsically a marketing function

  Performed by companies, webmasters and
consultants (“Search engine optimizers”) for
their clients

  Some perfectly legitimate, some very shady

Simplest forms

  First generation engines relied heavily on tf/idf
  What would you do as an SEO?
  SEOs responded with dense repetitions of chosen

terms
  e.g., maui resort maui resort maui resort
  Often, the repetitions would be in the same color as the

background of the web page
  Repeated terms got indexed by crawlers
  But not visible to humans on browsers

Pure word density cannot
be trusted as an IR signal

Variants of keyword stuffing

  Misleading meta-tags, excessive repetition
  Hidden text with colors, style sheet tricks,

etc.

Meta-Tags =
“… London hotels, hotel, holiday inn, hilton, discount,
booking, reservation, sex, mp3, britney spears, viagra, …”

Spidering/indexing

The Web

Web spider

Indexer

Indexes

Any way we can take
advantage of this system?

Cloaking

  Serve fake content to search engine spider

Is this a Search
Engine spider?

Y

N

SPAM

Real
Doc Cloaking

More spam techniques

  Doorway pages
  Pages optimized for a single keyword that re-direct

to the real target page
  Link spamming

  Mutual admiration societies, hidden links, awards –
more on these later

  Domain flooding: numerous domains that point or re-
direct to a target page

  Robots
  Fake query stream – rank checking programs

  “Curve-fit” ranking programs of search engines

The war against spam
  Quality signals - Prefer

authoritative pages based
on:
  Votes from authors (linkage

signals)
  Votes from users (usage

signals)

  Policing of URL
submissions
  Anti robot test

  Limits on meta-keywords
  Robust link analysis

  Ignore statistically implausible
linkage (or text)

  Use link analysis to detect
spammers (guilt by
association)

  Spam recognition by
machine learning
  Training set based on

known spam
  Family friendly filters

  Linguistic analysis, general
classification techniques,
etc.

  For images: flesh tone
detectors, source text
analysis, etc.

  Editorial intervention
  Blacklists
  Top queries audited
  Complaints addressed
  Suspect pattern detection

More on spam

  Web search engines have policies on SEO
practices they tolerate/block
  http://help.yahoo.com/help/us/ysearch/index.html
  http://www.google.com/intl/en/webmasters/

  Adversarial IR: the unending (technical) battle
between SEO’s and web search engines

  Research http://airweb.cse.lehigh.edu/

Size of the web

http://www.stormforce31.com/wximages/www.jpg

What is the size of the web?
  7,452,502,600,001 pages (as of yesterday)
  The web is really infinite

  Dynamic content, e.g., calendar
  Soft 404: www.yahoo.com/<anything> is a valid

page
  What about just the static web… issues?

  Static web contains syntactic duplication, mostly
due to mirroring (~30%)

  Some servers are seldom connected
  What do we count? A url? A frame? A section? A

pdf document? An image?

Who cares about the size of the web?

  It is an interesting question, but beyond that, who
cares and why?

  Media, and consequently the user
  Search engine designer (crawling, indexing)
  Researchers

What can we measure?

Besides absolute size, what else might we measure?

  Users interface is through the search engine
  Proportion of the web a particular search engine indexes
  The size of a particular search engine’s index
  Relative index sizes of two search engines

Challenges with these approaches?

Biggest one: search engines don’t like to let
people know what goes on under the hood

Search engines as a black box

  Although we can’t ask how big a search engine’s
index is, we can often ask questions like “does a
document exist in the index?”

search
engine

doc identifying
query

?
search results
for doc

Proportion of the web indexed

  We can ask if a document is in an index
  How can we estimate the proportion indexed by a

particular search engine?

web

random
sample

search
engine

proportion of
sample in index

Size of index A relative to index B

web

random
sample

engine
A

proportion of
sample in index

engine
B

Sampling URLs

  Both of these questions require us to have a random
set of pages (or URLs)

  Problem: Random URLs are hard to find!
  Ideas?
  Approach 1: Generate a random URL contained in a

given engine
  Suffices for the estimation of relative size

  Approach 2: Random pages/ IP addresses
  In theory: might give us a true estimate of the size of the web (as

opposed to just relative sizes of indexes)

Random URLs from search engines

  Issue a random query to the search engine
  Randomly generate a query from a lexicon and

word probabilities (generally focus on less
common words/queries)

  Choose random searches extracted from a query
log (e.g. all queries from Pomona College)

  From the first 100 results, pick a random page/
URL

Things to watch out for

  Biases induced by random queries
  Query Bias: Favors content-rich pages in the language(s) of the

lexicon
  Ranking Bias: Use conjunctive queries & fetch all

  Checking Bias: Duplicates, impoverished pages omitted

  Malicious Bias: Sabotage by engine
  Operational Problems: Time-outs, failures, engine

inconsistencies, index modification
  Biases induced by query log

  Samples are correlated with source of log

Random IP addresses

xxx.xxx.xxx.xxx

Generate
random IP

check if there is
a web server at
that IP

collect pages
from server

randomly pick
a page/URL

Random IP addresses

  [Lawr99] Estimated 2.8 million IP addresses running
crawlable web servers (16 million total) from
observing 2500 servers

  OCLC using IP sampling found 8.7 M hosts in 2001
  Netcraft [Netc02] accessed 37.2 million hosts in July

2002

Random walks

  View the Web as a directed graph
  Build a random walk on this graph

  Includes various “jump” rules back to visited sites
  Does not get stuck in spider traps!
  Can follow all links!

  Converges to a stationary distribution
  Must assume graph is finite and independent of the walk.
  Conditions are not satisfied (cookie crumbs, flooding)
  Time to convergence not really known

  Sample from stationary distribution of walk
  Use the “strong query” method to check coverage by

SE

Conclusions

  No sampling solution is perfect
  Lots of new ideas ...
 but the problem is getting harder
  Quantitative studies are fascinating and a

good research problem

Duplicate detection

http://rlv.zcache.com/cartoon_man_with_balled_fist_postcard-p239288482636625726trdg_400.jpg

Duplicate documents

  The web is full of duplicated content
  Redundancy/mirroring
  Copied content

  Do we care?
  How can we detect duplicates?
  Hashing

  Hash each document
  Compares hashes
  For those that are equal, check if the content is

equal

Duplicate?

Near duplicate documents

  Many, many cases of near duplicates
  E.g., last modified date the only difference

between two copies of a page
  A good hashing function specifically tries

not to have collisions
  Ideas?

  Locality sensitive hashing – (http://
www.mit.edu/~andoni/LSH/)

  Similarity – main challenge is efficiency!

Computing Similarity
  We could use edit distance, but way too slow
  What did we do for spelling correction?
  compare word n-gram (shingles) overlap

  a rose is a rose is a rose →
 a_rose_is_a
 rose_is_a_rose
 is_a_rose_is

 a_rose_is_a
  Use Jaccard Coefficient to measure the similarity between

documents (A and B)/(A or B)

N-gram intersection

  Computing exact set intersection of n-grams
between all pairs of documents is expensive/
intractable

  How did we solve the efficiency problem for
spelling correction?
  Indexed words by character n-grams
  AND query of the character n-grams in our query

word
  Will this work for documents?
  Number of word n-grams for a document is too

large!

Efficient calculation of JC

  Use a hash function that maps an n-gram
to a 64 bit number

Doc
A

n-grams

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Doc
A

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Jaccard
Coefficient

Efficient calculation of JC

  Use a hash function that maps an n-gram
to a 64 bit number

Doc
A

n-grams

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Doc
A

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

What if we just compared
smallest one of each?

Efficient calculation of JC

  Use a hash function that maps an n-gram
to a 64 bit number

Doc
A

n-grams

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Doc
A

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

-  Apply a permutation to
each 64 bit number
-  Compare smallest
values
-  Repeat some number
of times (say 200)

Efficient JC

Document 1

264

264

264

264

Start with 64-bit n-grams

Permute on the number line

with πi

Pick the min value

Test if Doc1 = Doc2

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

A B

Test if Doc1 = Doc2

Document 1 Document 2

264

264

264

264

264

264

264

264
A B

The minimum values after the permutations will be equal
with probability =
 Size_of_intersection / Size_of_union

Claim…

Document 1 Document 2

264

264

264

264

264

264

264

264
B A

- Repeat this, say 200 times, with different permutations
-  Measure the number of times they’re equal
-  This is a reasonable estimate for the JC

All signature pairs

  Now we have an extremely efficient method for
estimating a Jaccard coefficient for a single pair
of documents.

  But we still have to estimate N2 coefficients
where N is the number of web pages.
  Still slow

  Need to reduce the set of options
  locality sensitive hashing (LSH)
  sorting (Henzinger 2006)

Cool search engines
  What do you think will be the most important feature(s) in next-

generation search algorithms?
  Is it better to have a broad, general search engine or one that is tailored

to your needs?
  What new markets can be explored using a search engine?
  Some of these search engines are niche-specific sites and others are

search aggregators. Is web search diverging in the direction of many
topic-specific sites or converging to one large find-everything site? Is one
of these better? What should we be aiming for?

  What are the benefits of live updating searches (Collecta) vs. previously
indexed content (Google)?

  How do you think Collecta is able to find results so quickly?
  The article mentions “inserting a human element into search.” What

exactly does this mean? How can a web search include human power?
Is that useful?

Set Similarity of sets Ci , Cj

  View sets as columns of a matrix A; one row for each
element in the universe. aij = 1 indicates presence of
item i in set j

  Example

C1 C2

 0 1
 1 0
 1 1 Jaccard(C1,C2) = 2/5 = 0.4
 0 0
 1 1
 0 1

Key Observation

  For columns Ci, Cj, four types of rows
 Ci Cj

 A 1 1
 B 1 0
 C 0 1
 D 0 0

  Overload notation: A = # of rows of type A
  Claim

“Min” Hashing

  Randomly permute rows
  Hash h(Ci) = index of first row with 1 in column Ci
  Surprising Property

  Why?
  Both are A/(A+B+C)
  Look down columns Ci, Cj until first non-Type-D row
  h(Ci) = h(Cj)  type A row

Min-Hash sketches

  Pick P random row permutations
  MinHash sketch

SketchD = list of P indexes of first rows with 1 in
column C

  Similarity of signatures
  Let sim[sketch(Ci),sketch(Cj)] = fraction of

permutations where MinHash values agree
  Observe E[sim(sig(Ci),sig(Cj))] = Jaccard(Ci,Cj)

Example

 C1 C2 C3
R1 1 0 1
R2 0 1 1
R3 1 0 0
R4 1 0 1
R5 0 1 0

 Signatures
 S1 S2 S3
Perm 1 = (12345) 1 2 1
Perm 2 = (54321) 4 5 4
Perm 3 = (34512) 3 5 4

 Similarities
 1-2 1-3 2-3
Col-Col 0.00 0.50 0.25
Sig-Sig 0.00 0.67 0.00

Implementation Trick

  Permuting universe even once is prohibitive
  Row Hashing

  Pick P hash functions hk: {1,…,n}{1,…,O(n)}
  Ordering under hk gives random permutation of

rows

  One-pass Implementation
  For each Ci and hk, keep “slot” for min-hash value
  Initialize all slot(Ci,hk) to infinity
  Scan rows in arbitrary order looking for 1’s

  Suppose row Rj has 1 in column Ci
  For each hk,

  if hk(j) < slot(Ci,hk), then slot(Ci,hk)  hk(j)

Example
 C1 C2

R1 1 0
R2 0 1
R3 1 1
R4 1 0
R5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1
g(1) = 3 3

h(2) = 2 1
g(2) = 0 3

h(3) = 3 1
g(3) = 2 2

h(4) = 4 1
g(4) = 4 2
h(5) = 0 1
g(5) = 1 2

C1 slots C2 slots

Comparing Signatures

  Signature Matrix S
  Rows = Hash Functions
  Columns = Columns
  Entries = Signatures

  Can compute – Pair-wise similarity of
any pair of signature columns

