
http://www.flickr.com/photos/30686429@N07/3953914015/in/set-72157622330082619/

Web basics

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture13-webchar.ppt

Administrative

  CS lunch today!
  Unique hw5

  reading
  course feedback

  Schedule

Boolean queries

  c OR a AND f
  a AND f OR c

c b d

e d c

b d f

a f e

Outline

  Brief overview of the web

  Web Spam

  Estimating the size of the web

  Detecting duplicate pages

Brief (non-technical) history

  Early keyword-based engines
  Altavista, Excite, Infoseek, Inktomi, ca. 1995-1997

  Sponsored search ranking: Goto.com (morphed
into Overture.com → Yahoo!)
  Your search ranking depended on how much you

paid
  Auction for keywords: casino was expensive!

Brief (non-technical) history

  1998+: Link-based ranking pioneered by Google
  Blew away all early engines save Inktomi
  Great user experience in search of a business

model
  Meanwhile Goto/Overture’s annual revenues were

nearing $1 billion
  Result: Google added paid-placement “ads” to

the side, independent of search results
  Yahoo followed suit, acquiring Overture (for paid

placement) and Inktomi (for search)

Why did Google win?

  Relevance/link-based
  Simple UI
  Hardware – used commodity parts

  inexpensive
  easy to expand
  fault tolerance through redundancy

  What’s wrong (from the search engine’s
standpoint) of having a cost-per-click (CPC)
model and ranking ads based only on CPC?

Web search basics

The Web

Ad indexes

Web spider

Indexer

Indexes

Search

User

User needs/queries

  Researchers/search engines often categorize
user needs/queries into different types

  For example…?

User Needs
  Need [Brod02, RL04]

  Informational – want to learn about something (~40%)

  Navigational – want to go to that page (~25%)

  Transactional – want to do something (web-mediated) (~35%)
  Access a service

  Downloads

  Shop

  Gray areas
  Find a good hub
  Exploratory search “see what’s there”

How far do people look for results?

(Source: iprospect.com WhitePaper_2006_SearchEngineUserBehavior.pdf)

Users’ empirical evaluation of results
  Quality of pages varies widely

  Relevance is not enough
  Other desirable qualities (non IR!!)

  Content: Trustworthy, diverse, non-duplicated, well maintained
  Web readability: display correctly & fast
  No annoyances: pop-ups, etc

  Precision vs. recall
  On the web, recall seldom matters
  Recall matters when the number of matches is very small

  What matters
  Precision at 1? Precision above the fold?
  Comprehensiveness – must be able to deal with obscure queries

  User perceptions may be unscientific, but are
significant over a large aggregate

The Web document collection
  No design/co-ordination
  Content includes truth, lies, obsolete

information, contradictions …
  Unstructured (text, html, …), semi-

structured (XML, annotated photos),
structured (Databases)…

  Financial motivation for ranked results
  Scale much larger than previous text

collections … but corporate records
are catching up

  Growth – slowed down from initial
“volume doubling every few months”
but still expanding

  Content can be dynamically
generated

The Web

Web Spam

http://blog.lib.umn.edu/wilsper/informationcentral/spam.jpg

The trouble with sponsored search …

  It costs money. What’s the alternative?
  Search Engine Optimization:

  “Tuning” your web page to rank highly in the
algorithmic search results for select keywords

  Alternative to paying for placement
  Intrinsically a marketing function

  Performed by companies, webmasters and
consultants (“Search engine optimizers”) for
their clients

  Some perfectly legitimate, some very shady

Simplest forms

  First generation engines relied heavily on tf/idf
  What would you do as an SEO?
  SEOs responded with dense repetitions of chosen

terms
  e.g., maui resort maui resort maui resort
  Often, the repetitions would be in the same color as the

background of the web page
  Repeated terms got indexed by crawlers
  But not visible to humans on browsers

Pure word density cannot
be trusted as an IR signal

Variants of keyword stuffing

  Misleading meta-tags, excessive repetition
  Hidden text with colors, style sheet tricks,

etc.

Meta-Tags =
“… London hotels, hotel, holiday inn, hilton, discount,
booking, reservation, sex, mp3, britney spears, viagra, …”

Spidering/indexing

The Web

Web spider

Indexer

Indexes

Any way we can take
advantage of this system?

Cloaking

  Serve fake content to search engine spider

Is this a Search
Engine spider?

Y

N

SPAM

Real
Doc Cloaking

More spam techniques

  Doorway pages
  Pages optimized for a single keyword that re-direct

to the real target page
  Link spamming

  Mutual admiration societies, hidden links, awards –
more on these later

  Domain flooding: numerous domains that point or re-
direct to a target page

  Robots
  Fake query stream – rank checking programs

  “Curve-fit” ranking programs of search engines

The war against spam
  Quality signals - Prefer

authoritative pages based
on:
  Votes from authors (linkage

signals)
  Votes from users (usage

signals)

  Policing of URL
submissions
  Anti robot test

  Limits on meta-keywords
  Robust link analysis

  Ignore statistically implausible
linkage (or text)

  Use link analysis to detect
spammers (guilt by
association)

  Spam recognition by
machine learning
  Training set based on

known spam
  Family friendly filters

  Linguistic analysis, general
classification techniques,
etc.

  For images: flesh tone
detectors, source text
analysis, etc.

  Editorial intervention
  Blacklists
  Top queries audited
  Complaints addressed
  Suspect pattern detection

More on spam

  Web search engines have policies on SEO
practices they tolerate/block
  http://help.yahoo.com/help/us/ysearch/index.html
  http://www.google.com/intl/en/webmasters/

  Adversarial IR: the unending (technical) battle
between SEO’s and web search engines

  Research http://airweb.cse.lehigh.edu/

Size of the web

http://www.stormforce31.com/wximages/www.jpg

What is the size of the web?
  7,452,502,600,001 pages (as of yesterday)
  The web is really infinite

  Dynamic content, e.g., calendar
  Soft 404: www.yahoo.com/<anything> is a valid

page
  What about just the static web… issues?

  Static web contains syntactic duplication, mostly
due to mirroring (~30%)

  Some servers are seldom connected
  What do we count? A url? A frame? A section? A

pdf document? An image?

Who cares about the size of the web?

  It is an interesting question, but beyond that, who
cares and why?

  Media, and consequently the user
  Search engine designer (crawling, indexing)
  Researchers

What can we measure?

Besides absolute size, what else might we measure?

  Users interface is through the search engine
  Proportion of the web a particular search engine indexes
  The size of a particular search engine’s index
  Relative index sizes of two search engines

Challenges with these approaches?

Biggest one: search engines don’t like to let
people know what goes on under the hood

Search engines as a black box

  Although we can’t ask how big a search engine’s
index is, we can often ask questions like “does a
document exist in the index?”

search
engine

doc identifying
query

?
search results
for doc

Proportion of the web indexed

  We can ask if a document is in an index
  How can we estimate the proportion indexed by a

particular search engine?

web

random
sample

search
engine

proportion of
sample in index

Size of index A relative to index B

web

random
sample

engine
A

proportion of
sample in index

engine
B

Sampling URLs

  Both of these questions require us to have a random
set of pages (or URLs)

  Problem: Random URLs are hard to find!
  Ideas?
  Approach 1: Generate a random URL contained in a

given engine
  Suffices for the estimation of relative size

  Approach 2: Random pages/ IP addresses
  In theory: might give us a true estimate of the size of the web (as

opposed to just relative sizes of indexes)

Random URLs from search engines

  Issue a random query to the search engine
  Randomly generate a query from a lexicon and

word probabilities (generally focus on less
common words/queries)

  Choose random searches extracted from a query
log (e.g. all queries from Pomona College)

  From the first 100 results, pick a random page/
URL

Things to watch out for

  Biases induced by random queries
  Query Bias: Favors content-rich pages in the language(s) of the

lexicon
  Ranking Bias: Use conjunctive queries & fetch all

  Checking Bias: Duplicates, impoverished pages omitted

  Malicious Bias: Sabotage by engine
  Operational Problems: Time-outs, failures, engine

inconsistencies, index modification
  Biases induced by query log

  Samples are correlated with source of log

Random IP addresses

xxx.xxx.xxx.xxx

Generate
random IP

check if there is
a web server at
that IP

collect pages
from server

randomly pick
a page/URL

Random IP addresses

  [Lawr99] Estimated 2.8 million IP addresses running
crawlable web servers (16 million total) from
observing 2500 servers

  OCLC using IP sampling found 8.7 M hosts in 2001
  Netcraft [Netc02] accessed 37.2 million hosts in July

2002

Random walks

  View the Web as a directed graph
  Build a random walk on this graph

  Includes various “jump” rules back to visited sites
  Does not get stuck in spider traps!
  Can follow all links!

  Converges to a stationary distribution
  Must assume graph is finite and independent of the walk.
  Conditions are not satisfied (cookie crumbs, flooding)
  Time to convergence not really known

  Sample from stationary distribution of walk
  Use the “strong query” method to check coverage by

SE

Conclusions

  No sampling solution is perfect
  Lots of new ideas ...
 but the problem is getting harder
  Quantitative studies are fascinating and a

good research problem

Duplicate detection

http://rlv.zcache.com/cartoon_man_with_balled_fist_postcard-p239288482636625726trdg_400.jpg

Duplicate documents

  The web is full of duplicated content
  Redundancy/mirroring
  Copied content

  Do we care?
  How can we detect duplicates?
  Hashing

  Hash each document
  Compares hashes
  For those that are equal, check if the content is

equal

Duplicate?

Near duplicate documents

  Many, many cases of near duplicates
  E.g., last modified date the only difference

between two copies of a page
  A good hashing function specifically tries

not to have collisions
  Ideas?

  Locality sensitive hashing – (http://
www.mit.edu/~andoni/LSH/)

  Similarity – main challenge is efficiency!

Computing Similarity
  We could use edit distance, but way too slow
  What did we do for spelling correction?
  compare word n-gram (shingles) overlap

  a rose is a rose is a rose →
 a_rose_is_a
 rose_is_a_rose
 is_a_rose_is

 a_rose_is_a
  Use Jaccard Coefficient to measure the similarity between

documents (A and B)/(A or B)

N-gram intersection

  Computing exact set intersection of n-grams
between all pairs of documents is expensive/
intractable

  How did we solve the efficiency problem for
spelling correction?
  Indexed words by character n-grams
  AND query of the character n-grams in our query

word
  Will this work for documents?
  Number of word n-grams for a document is too

large!

Efficient calculation of JC

  Use a hash function that maps an n-gram
to a 64 bit number

Doc
A

n-grams

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Doc
A

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Jaccard
Coefficient

Efficient calculation of JC

  Use a hash function that maps an n-gram
to a 64 bit number

Doc
A

n-grams

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Doc
A

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

What if we just compared
smallest one of each?

Efficient calculation of JC

  Use a hash function that maps an n-gram
to a 64 bit number

Doc
A

n-grams

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

Doc
A

64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #
64 bit #

-  Apply a permutation to
each 64 bit number
-  Compare smallest
values
-  Repeat some number
of times (say 200)

Efficient JC

Document 1

264

264

264

264

Start with 64-bit n-grams

Permute on the number line

with πi

Pick the min value

Test if Doc1 = Doc2

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

A B

Test if Doc1 = Doc2

Document 1 Document 2

264

264

264

264

264

264

264

264
A B

The minimum values after the permutations will be equal
with probability =
 Size_of_intersection / Size_of_union

Claim…

Document 1 Document 2

264

264

264

264

264

264

264

264
B A

- Repeat this, say 200 times, with different permutations
-  Measure the number of times they’re equal
-  This is a reasonable estimate for the JC

All signature pairs

  Now we have an extremely efficient method for
estimating a Jaccard coefficient for a single pair
of documents.

  But we still have to estimate N2 coefficients
where N is the number of web pages.
  Still slow

  Need to reduce the set of options
  locality sensitive hashing (LSH)
  sorting (Henzinger 2006)

Cool search engines
  What do you think will be the most important feature(s) in next-

generation search algorithms?
  Is it better to have a broad, general search engine or one that is tailored

to your needs?
  What new markets can be explored using a search engine?
  Some of these search engines are niche-specific sites and others are

search aggregators. Is web search diverging in the direction of many
topic-specific sites or converging to one large find-everything site? Is one
of these better? What should we be aiming for?

  What are the benefits of live updating searches (Collecta) vs. previously
indexed content (Google)?

  How do you think Collecta is able to find results so quickly?
  The article mentions “inserting a human element into search.” What

exactly does this mean? How can a web search include human power?
Is that useful?

Set Similarity of sets Ci , Cj

  View sets as columns of a matrix A; one row for each
element in the universe. aij = 1 indicates presence of
item i in set j

  Example

C1 C2

 0 1
 1 0
 1 1 Jaccard(C1,C2) = 2/5 = 0.4
 0 0
 1 1
 0 1

Key Observation

  For columns Ci, Cj, four types of rows
 Ci Cj

 A 1 1
 B 1 0
 C 0 1
 D 0 0

  Overload notation: A = # of rows of type A
  Claim

“Min” Hashing

  Randomly permute rows
  Hash h(Ci) = index of first row with 1 in column Ci
  Surprising Property

  Why?
  Both are A/(A+B+C)
  Look down columns Ci, Cj until first non-Type-D row
  h(Ci) = h(Cj) type A row

Min-Hash sketches

  Pick P random row permutations
  MinHash sketch

SketchD = list of P indexes of first rows with 1 in
column C

  Similarity of signatures
  Let sim[sketch(Ci),sketch(Cj)] = fraction of

permutations where MinHash values agree
  Observe E[sim(sig(Ci),sig(Cj))] = Jaccard(Ci,Cj)

Example

 C1 C2 C3
R1 1 0 1
R2 0 1 1
R3 1 0 0
R4 1 0 1
R5 0 1 0

 Signatures
 S1 S2 S3
Perm 1 = (12345) 1 2 1
Perm 2 = (54321) 4 5 4
Perm 3 = (34512) 3 5 4

 Similarities
 1-2 1-3 2-3
Col-Col 0.00 0.50 0.25
Sig-Sig 0.00 0.67 0.00

Implementation Trick

  Permuting universe even once is prohibitive
  Row Hashing

  Pick P hash functions hk: {1,…,n}{1,…,O(n)}
  Ordering under hk gives random permutation of

rows

  One-pass Implementation
  For each Ci and hk, keep “slot” for min-hash value
  Initialize all slot(Ci,hk) to infinity
  Scan rows in arbitrary order looking for 1’s

  Suppose row Rj has 1 in column Ci
  For each hk,

  if hk(j) < slot(Ci,hk), then slot(Ci,hk) hk(j)

Example
 C1 C2

R1 1 0
R2 0 1
R3 1 1
R4 1 0
R5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1
g(1) = 3 3

h(2) = 2 1
g(2) = 0 3

h(3) = 3 1
g(3) = 2 2

h(4) = 4 1
g(4) = 4 2
h(5) = 0 1
g(5) = 1 2

C1 slots C2 slots

Comparing Signatures

  Signature Matrix S
  Rows = Hash Functions
  Columns = Columns
  Entries = Signatures

  Can compute – Pair-wise similarity of
any pair of signature columns

