
CS160 - Homework 3 solutions

1. (2.5 points) 6.22 (1-2 sentences)

If a query term is not in M , our dictionary, then it will not have an
impact on cosine similarity with any of the documents, since no doc-
ument vectors contain this term. The easiest way to deal with this is
when creating the vector for the query, you ignore terms not in the
dictionary. The only drawback to this is that if we do length normal-
ization on the query after dropping terms, it will give us a different
answer.

Another common answer was to just leave them in. While this would
work, it can cause complications since those terms don’t actually exist
in our index and when doing the dot product, we have to account for
that. In IR, this may cause less of an issue depending on how we actual
traverse the index.

2. (2.5 points) 7.1 (1-2 sentences)

Ordering them in decreasing order makes doing champion list gener-
ating trivial, since it is the first r documents in the posting list.

3. (20 points) Calculating tf-idf

Feel free to use matlab, python or excel to calculate these answers.

(a) 6.10

To get the TF-IDF entries, we multiply each document term fre-
quency by the IDF for that term. So, all term frequencies of “car”
are multiplied by 1.65, all “auto” by 2.08, etc.

Doc1 Doc2 Doc3
car 44.55 6.6 39.6
auto 6.24 68.64 0
insurance 0 53.46 46.98
best 21 0 25.5

1



(b) 6.15

When we normalize by length, we’re normalizing the document
vectors. For each document, we calculate it’s length as the square
root of the sum of the square of it’s entries. Then, we divide
each entry for that document by the document length. Length
normalization should be the LAST normalization we do on the
data (i.e. after term normalization and after term weighting).

Document lengths: 49.7, 69.0, 66.5

Doc1 Doc2 Doc3
car .90 .076 .60
auto .13 .79 0
insurance 0 .61 0.71
best .42 0 .38

(c) Compute the document similarities with the document vectors
above for the query “insurance car insurance for new autos” using
boolean term frequncies for the query.

Since “auto” and “autos” are different terms, we do not have an
entry for it. As mentioned above, for terms that don’t occur in
the index, we can just omit them. For IR, it is not uncommon
to leave the query vector unnormalized, i.e. don’t apply length
normalization. In this case, the ranking doesn’t change if we nor-
malize or not and since it wasn’t clear, I accepted both answers.

Query vector = [1, 0, 1, 0]
Doc1: .9 = .9
Doc2: .076+.61 = 0.69
Doc3: .60 + .71 = 1.31

(d) Compute the document similarities with the document vectors
above for the query “insurance car insurance for new autos” us-
ing “lnc” query weighting. Use your proposal from above to
handle out of vocabulary terms in the query. Did your ranking
change from the previous question? What type of query would
you expect to see a change in answer?

Query:
original - car: 1, insurance 2
term norm - car: 1, insurance 1.3
length norm (length=1.64) - car: 0.61, insurance, 0.79

Doc1: .61*.9 = .55
Doc2: .61*.0760 + .79*.61 = .53

2



Doc3: .61*.6 + .79*.71 = .93

The ordering does not change. Changing the frequencies of the
terms could cause the ordering to change. For example, if we
increased the frequency of “car” in our query then eventually,
Doc1 would become better when using term frequencies, while
the boolean normalization would not change.

4. (10 points) Let K = 2 and r = 3. Give an index and a query such
that the list of candidate documents generated using the champion list
approach does NOT contain the best K documents using a nnn.nnn
weighting model (i.e. only tf weighted).

Take the query w1w2. If w2 does not occur in any of the r documents
where w1 occurs most frequenty and vice versa, then the intersection
of the two champion lists will not find a match.

5. (5 points) Cluster pruning - If we let b1 = 2 and b2 = 1, that is,
assign followers to the two nearest leaders and then search documents
associated with the closest leader to the query, can we still have the
case that the closest document to the query is not found? If yes,
provide an explaination, if no, a counterexample.

6. (5 points) Play with Google’s page query system (found at
www.google.com/advance search, under “Page-specific tools” with the
heading “Find pages similar to the page:”). How well does it work?
How do you think it works?

3


