
CS160 - Homework 2 solutions

1. (10 points) Distributed indexing

Figure 4.5 in the book shows an example MapReduce framework for
distributed indexing.

(a) Given n documents and m machines, describe a good method for
splitting up the documents. Justify your answer.

The main thing is that we want to spread out the load evenly
among the machines. The easiest way to do this is to pick a
moderate splite size, say 16-64MB, and split all of the data into
such blocks. The size is large enough not to everwhelm the master
with administrative work, but small enough to deal with imbal-
ances in processing speed, etc.

(b) In the reduce phase, the example suggests partitioning the data
by a − f , g − p, and q − z. Is this a good approach? Explain
your answer. Describe a better partition of 3 parts (or a better
method of how to partition into 3 parts). Why is your partition
better?

As with part a, we’d like partitions that are roughly the same
size. It’s likely that the provided splits would not give this result
since there are many fewer words (and frequent) words that start
with q−z than from the other data sets. Note that the amount of
work is proportional not to the number of words in a dictionary
that start with a given letter, but the number of occurrences of
these words. We can take take a random sample of our data and
calculate how many occurrences of words start with each letter
in our corpus. We could then use either a greedy (assign each
group the largest) or dynamic programming (if you wanted to get
fancy) approach that creates groups that have similar frequency
on our sample data. If there is too big a discrepency, then we
could repeat the experiment, this time partitioning on the first 2
letters.

1



2. (10 points) Zipf’s law

From our data set from assignment 1, I counted the frequency of each
word and sorted them by frequency. Below are a few data points:

Rank Frequency

1 417,667
10 70,848
100 8,508
1000 842
10,000 37

(a) Create a plot using these points like Figure 5.2 (on paper is fine,
or you can use a program). Do the points seem to follow Zipf’s
law?

In log-log space, the points are fairly close to linear, though not
perfect. The points to tend to have a bit of a curve to it, but the
fit is reasonable.

(b) For all points ranked 10 or lower, estimate what the value should
be using the point above it (for 10, it would be 1, for 100 it would
be 10, etc.) and, percentage-wise, how far away the real values
are from this estimate. Does Zipf’s law seem like an appropriate
model for the data?
rank estimate % off

10 41,767 +69%
100 7,085 +21%
1000 851 -1%
10000 84 -56%

Although while some of the estimates are off by as much as 90%
(or 40% depending on which way you compute the percentages),
given the simplicity of the model, Zipf’s law is still a reasonable
approximation for the data for many applications. In addition,
when considering approximations based on only one point (i.e.
the previous point) we’re bound to see variation. If we look at
the data over multiple points (like part a), then the values are
more reasonable.

3. (10 points) Book problem 5.5

Feel free to use a decimal/binary converter on this problem and the
next. To make my life easier, delimit the bytes with a space for the
variable codes and delimit each entry in the gamma codes by a space

2



and use a ’,’ like done in the book within a code.

Gap lengths: [777,16966,276325, 30957268]
in binary: [1100001001, 100001001000110, 1000011011101100101, 1110110000101111011010100]

• variable:
00000110 10001001
00000001 00000100 11000110
00010000 01101110 11100101
00001110 01100001 00111101 11010100

• gamma

1111111110,100001001
111111111111110,00001001000110
1111111111111111110,000011011101100101
1111111111111111111111110,110110000101111011010100

4. (10 points) Decoding

For the codes below, show the gaps and the corresponding postings
for the encoded strings.

(a) variable code: 11010110 01011101 10111011 01101010 01110101
01101100 10000011

gaps: [86, 11963, 224228867] docIDs: [86, 12049, 224240916]

(b) gamma code: 11110001111011100111111101011011

gaps: [19, 7, 2, 219] docIDs: [19, 26, 28, 247]

3


