
CS160 - Assignment 1

Due: Friday Sept. 11, 6pm

The goal of these assignments is to give you experience in developing a
working IR system. We will build from the ground up each component of
the system. In the end, we will have a barebones system that does basic
retrieval and will be the framework for your final project, where you can
further extend some aspect that you find interesting.

Most of the assignments will build upon the code base developed for the
previous assignment, so it will benefit you to keep this in mind and make
sure that you write coherent, understandable code. I will also provide an
alternate solution for you to build upon, however, I often find it’s easier to
build from your own code, than someone elses.

The first step for an IR system (and for most natural language processing
systems) is to to read in the text and decide what will be the processing unit
to be worked with. For your first assignment, you will write a program that
will tokenize the documents and we will experiment with different tokeniza-
tion and token normalization techniques. You will see how these different
techniques affect the dictionary size.

Before starting this assignment read through the entire document. At the
end I’ve included some helpful hints and tools that may be useful. If there
is any ambiguity of question about what you are being asked to do, ask the
instructor to clarify.

1. Computer access

Some of information below assumes that you have access to the Pomona
CS lab nfs (i.e. lab access). If you don’t have this, please come talk
to me asap and we’ll get you setup with an account.

2. Get the basic code up and running

1

The skeleton code can be found on the cs NFS at “/common/cs/cs160/assign1/”.
You may use whatever environment you like. If you’re going to use
eclipse (which I strongly encourage), these steps will get you started.

(a) Create a new project: File → New → “Java Project”. Enter
“cs160” for the project name and click “finish”.

(b) Copy the skeleton files into the source directory (replace “<workspace>”
with the location of your workspace).
“cp -r /common/cs/cs160/assign1/search <workspace>/cs160/src”

(c) Refresh the items so they show up in Eclipse. Click on the project
and hit “F5” or right-click on the project and select “Refresh”

(d) The code should compile, but there is not a main class yet, so it
won’t run.

3. Initial corpus statistics

Depending on how we tokenize the text and how we normalize the
words, the size of our dictionary is impacted.

(a) Read through all of the classes and make sure you understand
what each class does/represents.

(b) Finish the Dictionary class. This class should keep track of the
number of unique strings that are added. For example, if we
call addWord four times with “test”, “test”, “test2”, “banana”,
then the size of the dictionary would be 3. If we call addWord

four times with “test”, “Test”, “test2”, “banana” the size of the
dictionary would be 4.

(c) Finish the TDTReader class. The class should iterate through
the corpus file and generate new “Document” objects for each
article. The document IDs for the documents should start at
0 and increment by one for each new document read. We’ll be
using a moderate sized corpus consisting of news articles. The
documents are concatenated into one large file and each document
is delimited by
“<DOC> ... <\DOC>”. A sample file with just a few articles can
be found at “/common/cs/cs160/assign1/tdt-corpus.sample”. I
suggest using this one to start with when you are debugging your
code. When you’re ready, the entire corpus can be found at
“/common/cs/cs160/data/tdt-corpus.text only”.

2

(d) Get some initial statistics about the number of words in the full
corpus. You’ll need to create a new class, call it Experimenter
(you won’t hand this in). To get some initial statistics using a
very basic tokenizer do the following in a function in the Experi-
menter class:

• Create a new SimpleTokenizer object

• Create a new TDT reader to read the data from the TDT
data file

• Set the SimpleTokenizer as the tokenizer for the reader

• Create a new Dictionary object

• Iterate through all of the documents in the file and add all
of the words to our dictionary

• Output the number of words in our dictionary

• Call this function from a main class. You should get a dic-
tionary size for the entire corpus in the 100K-200K range.

4. Improved tokenizer

The tokenizer we used so far only splits the text based on whites-
pace. We’re going to implement an improved tokenizer that does the
following:

• Delimits tokens by whitespace

• Single quotes at the beginning and end of words chould be sepa-
rate tokens

• Numbers should stay together. A number can start with a ‘+’
or a ‘-’, can have any number of digits, commas and periods
interspersed, but must end in a digit (note this is a more general
definition that accepts things like “192.168.1” and other things
like “-129.,24.34”).

• An abbreviation is any set of a single letter followed by a period
repeated 2 or more times. In regex terms, “(\w\.){2,}”. For ex-
ample, “I.B.M.”, “S.A.T.” and “p.m.” are all valid abbreviations,
while “Mr.” or “I.B” are not. All abbreviations should have the
periods removed, i.e. “I.B.M” becomes “IBM”.

• Finally, “. , ? : ; " ‘ () % $” should all be treated as sep-
arate tokens, regardless of where they appear (as long as they
don’t conflict with the above rules). So “$10,000” becomes two

3

tokens “$” and “10,000” and “I wondered,is this a test?” becomes
8 tokens, with the “,” and “?” as separate tokens.

Finish the ImprovedTokenizer to reflect the above tokenization rules.
I’ve included a tokenization of the sample corpus at
“/common/cs/cs160/assign1/tdt-corpus.sample.token”. Before you do
any actual coding, I suggest you write a bunch of test cases that test
various types of input. I’ve included a few examples of how you might
do this in the skeleton class file. This way, you can run it over and
over again as you make incremental changes to see what progress you’re
making and also make sure that you didn’t break something that was
working already. This can be tricky to get right, so it is extremely
beneficial to spend 15-20 minutes up front filling in some test cases.

You may do this however you like, but my suggestion would be to do
it in four steps: 1) split up the tokens initially based on whitespace
and the special characters 2) do another pass over this set of tokens
and take care of the single quote constraint (note, you can’t just split
on all single quotes, since this would break up words like “aren’t”) 3)
do a second pass over this new set of tokens and put back together
abbreviations 4) do a final pass and put back together numbers.

5. Data normalization

The last step to finish up our tokenization system is to implement some
token normalization techniques to further reduce the size of our vo-
cabulary. Finish the TokenProcessor class. This class should support
the following optional normalization techniques:

• lowercase: Lowercase all letters in the tokens

• stem: Stem all the tokens. I’ve provided a class “Porter” that
implements the Porter stemming algorithm. Use the “stem” func-
tion of this class to stem the tokens.

• numbers: Replace all numbers in the data with “<NUM>”. Use the
same definition of what is a number as described in the tokeniza-
tion section.

• stoplist: Remove from the list of tokens any strings that occur in
the stoplist. Note this is case insensitive, so if “about” is in the
stoplist then you should remove “about”, “About”, “ABOUT”,
etc.

4

A few further rules for data normalization:

• Apply the stoplist removal before doing any stemming

• Be efficient about looking up whether a token exists in the stoplist

• If you’re lowercasing and stemming, apply lowercasing before
stemming

• If a stoplist hasn’t been set, you’re program should still run and
just not remove any tokens.

Finish the TokenProcessor class with the above normalization tech-
niques.

6. Impact of tokenization and normalization on dictionary size

We now have everything in place to experiment a bit with our data.
Earlier, we measured the dictionary size using the simple tokenizer.
We’re going to compare that with our other techniques. You’ll need
to make one small change to your Experimenter class to add the data
normalization. Do this. Included with your code, you must handin a
short document with the following:

(a) A list of the dictionary sizes using your code for the following
settings:

• SimpleTokenizer alone (from above)

• ImprovedTokenizer
All settings below, assume the ImprovedTokenizer.

• number folding

• lowercasing

• stemming

• stoplist using “/common/cs/cs160/data/stoplist”

• stoplist using the 30 most frequent tokens (hint, you don’t
actually need to code this up :)

• stoplist using the 150 most requent tokens

• number folding AND lowercasing AND stoplist using the
above file

• All normalization techniques

(b) In addition to the above data, write a few sentences explaining
your results.

5

(c) Finally, also write a few sentences describing your recommenda-
tion for the settings of the above parameters. You may want to
play with other combinations. Make sure to justify your answer.

7. Hints/Comment

• I’m not too worried about efficiency for the code for now, but it
also shouldn’t take forever to run. If it takes longer than a few
minutes to run through the whole corpus you’ve probably done
something really inefficient.

• For those of you still fairly new to java, check out the follow-
ing tools/resources in javadoc (search online) which likely will be
useful for this assignment:

– java.util.regex.* – and related, String.match, String.replaceAll,
String.split

– java.lang.StringBuffer

– java.util.HashSet

• It’s likely you’ll run into memory issues at some point. To increase
the size of the java virtual machine memory allotment do the
following:

– Go to “Run Configurations...”, by clicking on the downward
arrow next to the button you use to run your program.

– Select the “Arguments” tab

– Under VM arguments enter “-Xmx512m”. This tells the VM
to use 512M for the heap. You can increase this further if
need be, but 512M should do it for this assignment.

8. What to turn in and how to turn it in

• What to turn in:

– A “jar” file of your code. To make my life easier (and to
give you experience creating .jar files) you will hand in a
jarred version of your code. Basically, this is like tarring or
zipping up your data, but it’s a format that allows you to
link other java programs to your code. You can read more
about it online. To generate a .jar file when you’re ready, do
the following:

∗ Select File → “Export...”

6

∗ Select Java → “JAR file” and click “next”

∗ In the “resources to export”, first, make sure that all
boxes are unchecked

∗ Then, open the projects/folders until the “search” pack-
age is showing. Select the box next to the search package.
This will check both “search” as well as the “src” folder.

∗ Make sure that both ”Export generated class files and
resources” and ”Export Java source files and resources”
are checked

∗ Click the “Browse...” button and select a filename and
location to save the file. You should save the jar file as
“search.jar”

∗ Click “Finish”. This will create the jar file in the specified
location.

– A document describing your token statistics and your an-
swers to the questions above. Any reasonable format is fine.

• How to turn it in to be specified on the course web page.

7

