Single Source Shortest Paths

- Given a graph G and two vertices s,t what is the shortest path from s to t?

For an unweighted graph, BFS gives us a solution to this problem.

For weighted graphs, as it turns out, we can calculate the shortest distance from s to all vertices $t \in V$ in worst case the same amount of time for any particular t, so we’ll look at this problem, which is the single source shortest paths.

- Shortest path property

If the path $v_1, v_2, v_3, ..., v_k$ where $v_i \in V$ is the shortest path from v_1 to v_k then for all $1 \leq i \leq j \leq k$, $v_i, v_{i+1}, ..., v_j$ is the shortest path from v_i to v_j

Proof: Consider that a shorter path exists between v_i and v_j, then we could use this path instead of the path $v_i, v_{i+1}, ..., v_j$ in the path from v_1 to v_k, resulting in a shorter path from v_1 to v_k, but this is a contradiction.

- General idea for all the algorithms

mark each vertex with an upper bound on the distance from the source to that node. Decrease that value until it is correct.

- Dijkstra’s algorithm

Assume that all of the weights are positive
Like BFS, except our frontier that we expand is based on the weights of the edges not the number of edges.

Dijkstra\((G, s)\)

1. **for** all \(v \in V\)
2. \(dist[v] \leftarrow \infty\)
3. \(prev[v] \leftarrow \text{null}\)
4. \(dist[s] \leftarrow 0\)
5. \(Q \leftarrow \text{MakeHeap}(V)\)
6. **while** !\(\text{Empty}(Q)\)
7. \(u \leftarrow \text{ExtractMin}(Q)\)
8. **for** all edges \((u, v) \in E\)
9. \[\text{if } dist[v] > dist[u] + w(u, v)\]
10. \(dist[v] \leftarrow dist[u] + w(u, v)\)
11. \(\text{DecreaseKey}(Q, v, dist[v])\)
12. \(prev[v] \leftarrow u\)

Example

Why doesn’t this hold with negative weights?

Consider the graph:

\[A \rightarrow B : 1, C : 10\]
\[B \rightarrow D : 1\]
\[C \rightarrow D : -10\]
\[D \rightarrow E : 5\]

What is the shortest path from \(A\) to \(E\)?

- Is it correct?

 Invariant: For every vertex that has been visited/removed from the heap, \(dist[v]\) is the actual shortest distance from \(s\) to \(v\)

 The only time a vertex \(u\) gets visited is when the distance from \(s\) to that vertex is smaller than any remaining vertex. In addition, because we enforce positive weights, there cannot be any other
path to \(u \) that hasn’t been visited already that would result in a shorter path, since all paths visited in the future are longer.

- Runtime
 Depends on the heap implementation

1 call to \(\text{MAKEHEAP} \)

\(|V| \) calls to \(\text{EXTRACTMAX} \)

\(|E| \) calls to \(\text{DECREASEKEY} \)

1. array
 \(V + V \times V + E = O(V^2) \)

2. binary heap
 \(V + V \log V + E \log V = O((V + E) \log V) = O(E \log V) \)

 if \(E < V^2 / \log V \) then this is an improvement

3. fibonacci heap
 \(V + V \log V + E = O(V \log V + E) \)

- negative cycles
 positive cycles - if a positive cycle exists can a path through that cycle be the shortest path?

negative cycles - What happens when a negative cycles exists along the path to a negative cycle?

- Bellman-Ford algorithm (general case)
Bellman-Ford(G, s)

1. for all $v \in V$

 $dist[v] \leftarrow \infty$

 $prev[v] \leftarrow \text{null}$

2. $dist[s] \leftarrow 0$

3. for $i \leftarrow 1$ to $|V| - 1$

4. for all edges $(u, v) \in E$

5. if $dist[v] > dist[u] + w(u, v)$

6. $dist[v] \leftarrow dist[u] + w(u, v)$

7. $prev[v] \leftarrow u$

8. for all edges $(u, v) \in E$

9. if $dist[v] > dist[u] + w(u, v)$

10. return $false$

Example

- Is it correct?

 Assuming no negative cycles (along the paths from s),

 Invariant: After any iteration i, all i edge paths from the source s to any vertex are the shortest possible path of i edges or less.

 For $i = 1$ this is true, since we're only traversing one edge, so the distance for any vertex v, 1 edge away from s will be $w(s, v)$, which is the shortest path.

 Consider the difference between paths of length $i - 1$ and paths of length i. There are two options:

 * Adding another edge decreases the length of a particular path

 In this case, the comparison at line 6 will notice this difference (since it iterates over all edges) and the new distance for v will be updated accordingly

 * Adding another edge doesn’t decrease the length of a particular path

 In this case, the comparison at line 6 will not be true and no changes will be made, so the invariant still holds

Does it identify negative cycles?

The check in lines 9-11, see if we can continue to decrease the shortest path to a node. The only time this can happen, is if
there is a negative cycle exists since all paths of length $V - 1$
should already have the correct values. Any path longer than
this must contain a cycle. A positive cycle would not decrease
the value, so it must be a negative cycle.

- Running time
 $V - 1$ loops and each loop iterates over all edges, $O(VE)$

Is there any way we can speed this up slightly? What happens if
at a given iteration we don’t update any distances?

- Dags
 Adds the constraint that there are no cycles

Minimum Spanning Trees

- what is the problem?
 What is the lowest weight set of edges that connects all vertices of an
 undirected graph with positive weights?

 Can there be cycles?

 Example

- what are the applications

 - Network connectivity

 - Wiring connectivity

- Cut property
 What is a cut?

 Let S be a subset of the vertices and let edge $e = (u, v)$ be the mini-
 mum cost edge with $u \in S$ and $v \in V - S$. Every minimum spanning
tree contains the edge e.

 Proof: Consider a minimum spanning tree T that does not contain
 e. There must be come cycle in the graph that contains an edge
\(e' = (u', v') \) with \(u' \in S \) and \(v' \in V - S \) with a higher weight (otherwise \(e \) would be the only option for creating an spanning tree).

If we remove \(e' \) from the spanning tree and include \(e \), we will still have a spanning tree since we still connect sets \(S \) and \(V - S \). However, this new tree will have a lower weight since the weight of \(e \) is less than the weight of \(e' \), so \(T \) is not a minimum spanning tree.

We’ll use this property to prove the correctness of the MST algorithms.

- Kruskal’s algorithm

Add the lowest weight edge to the tree as long as that edge does not connect two vertices that are already connected via some other path.

Kruskal(G)

1. for all \(v \in V \)
2. MakeSet\((v) \)
3. \(T \leftarrow \{ \} \)
4. sort the edges of \(E \) by weight
5. for all edges \((u, v) \in E \) in increasing order of weight
6. if \(\text{Find-Set}(u) \neq \text{Find-Set}(v) \)
7. add edge to \(T \)
8. \(\text{Union}((\text{Find-Set}(u),\text{Find-Set}(v))) \)

Example

1. Is it correct?

 Let \(S \) be the set \(\text{Find-Set}(u) \). The edge \((u, v) \) is the minimum edge from \(S \) to \(V - S \) since we’re visiting edge in increasing order and if \(S \) were connected to \(S - V \) then \(\text{Find-Set}(u) \neq \text{Find-Set}(v) \) would not be true. Therefore, by the cut property, \(e \) must be part of the MST.

2. Running time

 \(V \) calls to MakeSet

 Sort the edges: \(O(E \log E) \)
2E calls to \textbf{Find-Set}

V − 1 calls to \textbf{Union}

Depends on the implementation of the sets

- Linked lists
 \[V + E \log E + E \ast V + V = O(E \ast V) \]
- Linked lists + heuristics (see section 21.3 of [1])

\[
V + E \log E + E \log V + V = O(E \log E + V \log V)
= O(E \log V + V \log V) = O((E + V) \log V) = O(E \log V)
\]

• Prim’s algorithm

Start at some root node and build out the MST by adding the lowest weighted edge at the frontier.

\textsc{Prim}(G, r)
1. \textbf{for} all \(v \in V \)
2. \hspace{1em} \texttt{key}[v] \leftarrow \infty
3. \hspace{1em} \texttt{prev}[v] \leftarrow \texttt{null}
4. \hspace{1em} \texttt{key}[r] \leftarrow 0
5. \hspace{1em} H \leftarrow \textsc{MakeHeap}(\texttt{key})
6. \hspace{1em} \textbf{while} !\textsc{Empty}(H)
7. \hspace{2em} u \leftarrow \textsc{Extract-Min}(H)
8. \hspace{2em} \texttt{visited}[u] \leftarrow \texttt{true}
9. \hspace{2em} \textbf{for} each edge \((u, v) \in E\)
10. \hspace{3em} \textbf{if} !\texttt{visited}[v] and \(w(u, v) < \texttt{key}(v) \)
11. \hspace{4em} \textsc{Decrease-Key}(v, w(u, v))
12. \hspace{4em} \texttt{prev}[v] \leftarrow u

Example

- Is it correct?

Let \(S \) be the set of vertices visited so far (i.e. \(v : \texttt{visited}[v] = \texttt{true} \)). The only time a new edge is added to the MST is when it
is the lowest weight edge from S to $V - S$ because we use a heap and we only add edges from nodes in S. Therefore, by the cut property, this added edge is part of the MST.

- **Runtime**

 V initialization operation of $\Theta(1)$

 1 call to `MakeHeap`

 V calls to `Extract-Min`

 E calls to `Decrease-Key`

 1. Binary heap

 $V + E + V \log V + E \log V = O((V + E) \log V) = O(E \log V)$

 2. Fibonacci heap

 $V + E + V \log V + E = O(V \log V)$

These notes are adapted from material found in chapters 22,23 of [1], chapter 4 of [2] and chapters 4,5 of [3]

References

