• Types of graphs
What is a graph? A graph is a set of vertices \(V \) and a set of edges \((u,v) \in E \) where \(u, v \in V \)

 – undirected
 – directed
 – weighted

Some special cases

 – tree - connected, undirected graph without any cycles
 – DAG (directed acyclic graph) - directed graph without any cycles
 – complete graph - a graph where every vertex is connected
 – bipartite graph - a graph where every vertex can be partitioned into two sets \(X \) and \(Y \) such that all edges connect a vertex \(u \in X \) and a vertex \(v \in Y \)

• Examples

 – Transportation networks (flights, roads, etc.)
 – Communication networks
 – Web
 – Bayesian networks
 – Social networks
 – Circuit design

• Representation
- Adjacency list
 Each vertex \(u \in V \) contains an adjacency list of the set of vertices \(v \) such that there exists an edge \((u, v) \in E\).

Example of undirected and directed
- Adjacency matrix
 A graph is represented by a \(|V| \times |V|\) matrix \(A \) such that
 \[
 a_{ij} = \begin{cases}
 1 & \text{if } (i, j) \in E \\
 0 & \text{otherwise}
 \end{cases}
 \]

Example of undirected and directed
- Tradeoffs
 Dense vs. sparse graph

 Adjacency list: Space efficient, e.g. web

 Adjacency matrix: constant time lookup to see if an edge exists

 Best of both worlds?
- Weighted graphs
 Adjacency list: store the weight in the adjacency list

 Adjacency matrix:
 \[
 a_{ij} = \begin{cases}
 \text{weight} & \text{if } (i, j) \in E \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Graph algorithms
 - graph traversal (BFS, DFS)
 - Shortest path from \(a \) to \(b \)
 * unweighted
 * weighted positive weights
 * negative/positive weights
 - All pair shortest paths
 - Are all nodes in the graph connected?
- Is the graph a bipartite graph?
- ...

- Breadth first search (BFS) on trees

\texttt{TreeBFS(T)}
1 \hspace{2em} \texttt{Enqueue(Q, Root(T))}
2 \hspace{2em} \texttt{while \! Empty(Q)}
3 \hspace{2em} \hspace{2em} v \leftarrow \texttt{Dequeue(Q)}
4 \hspace{2em} \hspace{2em} \texttt{Visit(v)}
5 \hspace{2em} \hspace{2em} \texttt{for all c \in Children(v)}
6 \hspace{2em} \hspace{2em} \texttt{Enqueue(Q, c)}

What order does the algorithm traverse the nodes?

Does it visit all of the nodes?

Frontier - The frontier of the algorithm is the set of vertices that have been visited

Runtime - Visits each node and edge exactly once - $O(|V| + |E|)$

- Depth first search (DFS) on trees

\texttt{TreeDFS(T)}
1 \hspace{2em} \texttt{Push(S, Root(T))}
2 \hspace{2em} \texttt{while \! Empty(S)}
3 \hspace{2em} \hspace{2em} v \leftarrow \texttt{Pop(S)}
4 \hspace{2em} \hspace{2em} \texttt{Visit(v)}
5 \hspace{2em} \hspace{2em} \texttt{for all c \in Children(v)}
6 \hspace{2em} \hspace{2em} \texttt{Push(S, c)}

What order does the algorithm traverse nodes?

Frontier?

Runtime
BFS on graphs
Visits all nodes reachable from \(s \) and records the shortest distance from \(s \) to each other node

What happens when we generalize to graphs?

Maze analogy

\[
\text{BFS}(G, s) \\
1 \text{ for each } v \in V \\
2 \text{ dist}[v] = \infty \\
3 \text{ dist}[s] = 0 \\
4 \text{ ENQUEUE}(Q, s) \\
5 \text{ while } \neg \text{EMPTY}(Q) \\
6 \quad u \leftarrow \text{DEQUEUE}(Q) \\
7 \quad \text{VISIT}(u) \\
8 \quad \text{ for each edge } (u, v) \in E \\
9 \quad \quad \text{if } \text{dist}[v] = \infty \\
10 \quad \quad \quad \text{ENQUEUE}(Q, v) \\
11 \quad \quad \quad \text{dist}[v] \leftarrow \text{dist}[u] + 1
\]

– Is it correct? Does BFS visit all nodes reachable from node \(s \)?

Consider some \(u \) that the algorithm “misses”. Choose any path from \(s \) to \(u \) and look at the last vertex on that path that the procedure actually visited. Call this node \(z \), and let \(w \) be the node immediately after it on the same path. \(z \) would be visited and \(w \) was not, which is a contradiction given the pseudocode above.

– Runtime

The algorithm visits each node at most once and each edge is examined twice, once from \(u \) and once from \(v \), \(O(|V| + |E|) \)

What about directed graphs?
What if the graph were stored as an adjacency matrix?

BFS generates a tree from the start node \(s \), called the BFS-Tree. What properties does this tree have?
If a path exists from s to v (i.e. v is reachable from s), then v will be in the BFS-Tree.

The path in the BFS-Tree from any two nodes, u, v (including the root) is the shortest path between those two nodes.

Think about how BFS expands the frontier.

Suppose it was not the shortest. Then there would exist some other node w, such that \(\text{distance}(u, w) + \text{distance}(w, v) < \text{distance}(u, v) \), where the path from u to v does not include w. However, given that BFS expands the frontier one step at a time.

- **DFS on graphs**

DFS-Visit\((u)\)
1. \(\text{visited}[u] \leftarrow \text{true}\)
2. PreVisit\((u)\)
3. for all edges \((u, v) \in E\)
 4. if !\(\text{visited}[v]\)
 5. DFS-Visit\((v)\)
6. PostVisit\((u)\)

DFS\((G)\)
1. for all \(v \in V\)
2. \(\text{visited}[v] \leftarrow \text{false}\)
3. for all \(v \in V\)
 4. if !\(\text{visited}[v]\)
 5. DFS-Visit\((v)\)

The output from DFS is a *depth-first forest*.

Why do we try and visit all nodes using DFS and not BFS? We could do a similar procedure for BFS, however, BFS is generally used to find shortest paths, while DFS is generally used to look at connectedness.

- Is it correct? Does it explore all nodes?
- Runtime
 Similar to BFS each vertex is visited once and each edge visited twice, \(O(|V| + |E|)\)
• Topological sort of a DAG

– A topological sort indicates precedence, e.g. classes.
– Why not topological sort of any directed graph?
– If G is a DAG, then it has a topological ordering. Why?

Topological-Sort1(G)

1. Find a node v with no incoming edges
2. Delete v from G
3. Add v to linked list
4. **Topological-Sort1(G)**

* Is it correct? Root of a DAG contains DAGs as children
* Runtime
 1. $O(|V| + |E|)$
 2. $O(|E|)$ overall
 4. Call $|V|$ times - $O(|V|^2 + |V||E|)$

Topological-Sort2(G)

1. for all edges $(u, v) \in E$
2. $active[v] \leftarrow active[v] + 1$
3. for all $v \in V$
4. if $active[v] = 0$
5. [Enqueue(S, v)]
6. while !EMPTY(S)
7. $u \leftarrow$ DEQUEUE(S)
8. add u to linked list
9. for each edge $(u, v) \in E$
10. $active[v] \leftarrow active[v] - 1$
11. if $active[v] = 0$
12. [Enqueue(S, v)]

* Is it correct?
* Running time?

Example

Runtime

6
• Does a cycle exist in a directed graph, i.e. is it a DAG?
 What is a cycle? A cycle is a path in the tree \(v_0, v_1, v_2, ..., v_n, v_0\) where the beginning and ending vertex are the same.

Be careful, there are things that look like cycles, but are not.

Call \textsc{Topological-Sort}. If the number of nodes in linked list is the number of vertices, then yes, otherwise, no.

• Is an undirected graph connected? Discovering connected components in an undirected graph.
 Given a node \(u \in V\) can we reach all other nodes in the graph?

Run \textsc{DFS} or \textsc{BFS} and keep track of the visited nodes. If we visit all of the nodes, then yes, otherwise no.

• Is the graph strongly connected?
 A strongly connected graph is a directed graph where any node \(u \in V\) is reachable from any other node \(v\).

\textsc{Strongly-Connected}(G)
1. Run \textsc{DFS} or \textsc{BFS} from some node \(u\)
2. \textbf{if} not all nodes are visited
3. \hspace{1em} \textbf{return} false
4. Create graph \(G^R\) by reversing all edge directions
5. Run \textsc{DFS} or \textsc{BFS} on \(G^R\) from node \(u\)
6. \textbf{if} not all nodes are visited
7. \hspace{1em} \textbf{return} false
8. \textbf{return} true

• Is the graph a bipartite graph?
 What makes a graph bipartite?

Is a triangle a bipartite graph? Why not?
Can we divide the graph into two colors? Pick a node and color it red. If the graph is bipartite, what must we know about all of it’s neighbors? What about the neighbors of those nodes?

BIPARTITE\(G\)
1 Run BFS
2 for all \(v \in V\)
3 if \(\text{dist}[v] \mod 2 = 0\)
4 \(\text{color}[v] = \text{red}\)
5 else
6 \(\text{color}[v] = \text{blue}\)
7 for all \((u, v) \in E\)
8 if \(\text{color}[u] = \text{color}[v]\)
9 return false
10 return true

• Does a sink exist in a directed graph?
• Isomorphism

These notes are adapted from material found in chapter 22 of [1], chapter 3 of [2] and chapters 3,4 of [3].

References