CS161 - Search Trees

David Kauchak

- Binary Search - Given a sorted list of values A, find a particular value. Similar to looking something up in a dictionary or phone book: $O(\log n)$

- Binary search tree (BST) - A binary search tree is a binary tree where a parent's value is greater than all children to the left and less than or equal to all children to the right. Specifically, given a node x in a BST:

$$\text{Left}(x) < x \leq \text{Right}(x)$$

As with other tree structures, can be implemented with pointers or with an array

Look at example(s)

- Given the definition, what else can we say?
 * All elements to the left of a node are less than the node
 * All elements to the right of a node are greater than or equal to the node
 * The smallest element is the left-most node
 * The largest element is the right-most node

- Why not the setup below?:

$$\text{Left}(x) \leq x \leq \text{Right}(x)$$

- Which of the set operations is this data structure good/bad for?
 * SEARCH(S, k) - good
 * INSERT(S, k) - average
* **DELETE**(*S*, *x*) - average
* **MINIMUM**(*S*) - good
* **MAXIMUM**(*S*) - good

Enumerating the elements in order:

INORDER_TREE_WALK(x)

1. if *x* ≠ null
 2. **INORDER_TREE_WALK**(Left(*x*))
 3. print *x*
 4. **INORDER_TREE_WALK**(Right(*x*))

* Is it correct?
 Definition of BST: Left(*x*) < *x* ≤ Right(*x*) and proof by induction.
* Runtime?
 Given a node with *k* nodes in the left subtree and *n* − *k* − 1 nodes in the right subtree, the recurrence is:

\[
T(n) = T(k) + T(n - k - 1) + c
\]

we can solve this, or, answer the following two questions:

1. How much work is done for each call to **INORDER_TREE_WALK**?
2. How many calls are made to **INORDER_TREE_WALK**?

* What needs to be changed to traverse in reverse order?

* Pre-order and post-order traversals?

Searching for a particular value:

BST_SEARCH(x, *k*)

1. if *x* = null or *k* = *x*
2. return *x*
3. elseif *k* < *x*
4. return **BST_SEARCH**(Left(*x*), *k*)
5. else
6. return **BST_SEARCH**(Right(*x*), *k*)
IterativeBSTSearch\((x, k)\)
1. while \(x \neq \text{null}\) and \(k \neq x\)
2. \hspace{1em} if \(k < x\)
3. \hspace{2em} \(x \leftarrow \text{Left}(x)\)
4. \hspace{1em} else
5. \hspace{2em} \(x \leftarrow \text{Right}(x)\)
6. return \(x\)

1. Is it correct?
2. Runtime? What is the worst case? The node we’re looking for is a leaf and it is the deepest leaf - \(O(h)\)

- Finding the min/max

BSTMin\((x)\)
1. if \(\text{Left}(x) = \text{null}\)
2. \hspace{1em} return \(x\)
3. else
4. \hspace{1em} return BSTMin(\text{Left}(x))

IterativeBSTMin\((x)\)
1. while \(\text{Left}(x) \neq \text{null}\)
2. \hspace{1em} \(x \leftarrow \text{Left}(x)\)
3. return \(x\)

* Is it correct?
 LEFT\((x) < x \leq \text{Right}(x)\), therefore the smallest element is the leftmost element.
* Runtime? We always visit a leave of the tree. Worst case, this leave is the lowest leave - \(O(h)\)
* What needs to be changed to find the max?

- Successor and predecessor

 * A simple look:

 - Predecessor is the right-most node of the left sub-tree, i.e. the largest node of all of the elements that are less than a node.
 - Successor is the left-most node of the right sub-tree, i.e. the smallest node of all of the elements that are larger than a node.
* What if a node does not have a left or right subtree?

Let’s examine successor. If a node \(x \) doesn’t have a right sub-tree, then either the element is the largest element and doesn’t have a successor or it’s successor, call it \(y \), is the element in the tree to which \(x \) is the predecessor. So, we want to find the node \(y \) such that \(x \) is the right-most node of the left sub-tree of \(y \). Another way of saying it, we want to find the lowest ancestor of \(x \) whose left child is also an ancestor of \(x \).

Successor(\(x \))

1. if Right(\(x \)) \(\neq \) null
2. return BSTMin(Right(\(x \)))
3. else
4. \(y \leftarrow \) Parent(\(x \))
5. while \(y \neq \) null and \(x \) = Right(\(y \))
6. \(x \leftarrow y \)
7. \(y \leftarrow \) Parent(\(y \))
8. return \(y \)

- Is it correct?
- Runtime? Worst case, we have to traverse the tree from one of the leaves to the root. \(O(h) \)

- Insertion into a BST
BSTInsert(T, x)
1. if $\text{Root}(T) = \text{null}$
2. \hspace{1em} $\text{Root}(T) \leftarrow x$
3. else
4. \hspace{1em} $y \leftarrow \text{Root}(T)$
5. while $y \neq \text{null}$
6. \hspace{2em} $\text{prev} \leftarrow y$
7. if $x < y$
8. \hspace{3em} $y \leftarrow \text{Left}(y)$
9. else
10. \hspace{3em} $y \leftarrow \text{Right}(y)$
11. $\text{Parent}(x) \leftarrow \text{prev}$
12. if $x < \text{prev}$
13. \hspace{2em} $\text{Left}(\text{prev}) \leftarrow x$
14. else
15. \hspace{2em} $\text{Right}(\text{prev}) \leftarrow x$

* Is it correct? Assuming no duplicates in the tree, finds the appropriate parent and inserts the value. Lines 6-8 make sure that the BST property is maintained.

What happens if there is a duplicate?
* Runtime? $O(h)$

- Deleting a node: 3 cases
 1. If x has no children, remove x
 2. If x has only one child, splice out x
 3. If x has two children, replace x with its successor in the list.
 Will it always have a successor?
 * Is it correct?
 * Runtime? $O(h)$ for the call to find the successor.

- Examples

- Most of the algorithms run in time bounded by the height of the tree.
 * What is the worst case height? When does this happen?
 * What is the best case height?
• Randomized BST version - The expected height of a randomly built binary search tree is \(O(\log n) \), i.e. a tree where the values inserted are randomly selected.

• Balanced trees - If we can make sure that the trees are balanced, then all of the operations bounded by the height run in time \(O(\log n) \).

Red-Black trees, AVL trees, ...

• B-Trees

 − A B-Tree is a balanced \(n \)-ary tree with the following properties:
 * Each node \(x \) contains between \(t - 1 \) and \(2t - 1 \) keys (denoted \(n(x) \)) stored in increasing order, denoted \(K_x \):
 \[K_x = K_x[1] \leq K_x[2] \leq \ldots \leq K_x[n(x)] \]
 * Each internal node also contains \(n(x) + 1 \) children (i.e. between \(t \) and \(2t \) children), denoted \(C_x = C_x[1], C_x[2], \ldots, C_x[n(x)+1] \)
 * The keys of a parent delimit the values that a child’s keys can take. Specifically
 \[K_{C_x[1]} \leq K_x[1] \leq K_{C_x[2]} \leq K_x[2] \leq \ldots \leq K_x[n(x)] \leq K_{C_x[n(x)+1]} \]

 For example, if the a node has \(K_x[i] = 15 \) and \(K_x[i+1] = 25 \)
 then child \(i + 1 \) must have keys between 15 and 25.

 * All leaves have the same depth

 − Example B-Tree

 − Why B-Trees vs. Red-Black vs ...?

 * Memory is limited or there is huge amount of data to be stored
 * In the extreme, only one node is kept in memory and the rest on disk
 * Size of the nodes is determined by a page size in memory
 * We will count both run-time as well as the number of disk accesses
 * Because \(t \) is generally large, the height of a B-tree is generally quite small, e.g. if \(t = 1001 \) then a B-Tree of height 2 can over one billion values.
- Height of a B-Tree
 For a tree of height \(h \), what is the smallest number of keys a B-Tree can have?

 \(h = 0 \), 1 node
 \(h = 1 \), 2 nodes
 \(h = 2 \), \(2t \) nodes
 \(h = 3 \), \(2t^2 \) nodes

 and each node must contain at least \(t - 1 \) keys

 \[
 n \geq 1 + (t - 1) \sum_{i=1}^{h} 2^i - 1
 = 1 + 2(t - 1) \left(\frac{t^h - 1}{t - 1} \right)
 = 2t^h - 1
 \]

 so, \(t^h \leq \frac{n + 1}{2} \) and \(h \leq \log_t \frac{n + 1}{2} \)

B-TreeSearch\((x, k)\)
 1. \(i \leftarrow 1 \)
 2. while \(i \leq n(x) \) and \(k > K_x[i] \)
 \(i \leftarrow i + 1 \)
 3. if \(i \leq n(x) \) and \(k = K_x[i] \)
 return \((x, i)\)
 4. else
 DiskRead\((C_x[i])\)
 return B-TreeSearch\((C_x[i], k)\)

* Is it correct?
* Runtime?
 \(O(h) = O(\log_t n) \) calls to B-TreeSearch

 \(O(\log_t n) \) disk accesses

 Each call to B-TreeSearch takes at most \(O(t) \) time, so runtime is \(O(t \log_t n) \)
Why don’t we use binary search to find the correct location?

Inserting a node into a B-Tree
Starting at the root, follow the appropriate path down to a leaf node by finding the child such that \(key_i[x] < val \leq key_{i+1}[x] \). At each node:

- If the node is full (contains \(2t - 1 \) keys), split the keys about the medial value into two nodes and add this median value to the parent node
- If the node is a leaf node, insert it into its correct spot

Walk though example in book

Is it correct?
- Does the item end up in the correct place?
- Are the tree properties maintained?

Running time?
Without any splitting, similar to B-TREE SEARCH with one additional disk write.

What happens when a node is split?
- 3 disk write operations, one for the parent node and 2 for the split nodes
- Runtime is \(O(t) \) to split a node since we’re just iterating through the elements a few times

What’s the maximum number of nodes that can be split? \(O(h) \)
In both of these situations, \(O(h) = O(\log_t n) \) disk accesses and runtime of \(O(th) = O(t \log_t n) \)

Deleting a node from a B-Tree
\(O(\log_t n) \) disk accesses \(O(t \log_t n) \) runtime

These notes are adapted from material found in chapters 12, 18 of [1].

References