Recurrences

David Kauchak

Recurrence: a function that is defined with respect to itself on smaller inputs.

- Why are we concerned with recurrences?
 The computational costs of divide and conquer algorithms and, in general, recursive algorithms, can often be described easily using recurrences.

- The problem?
 Recurrences are easy to define, but they don’t readily express the actual computational cost of the algorithm. We want to remove the self-recurrence and determine a more understandable form of the function.

- The methods
 Each approach will provide you with a different way for analyzing recurrences. Depending on the situation, one or more of the approaches may be applicable.

 - Substitution method: When we have a good guess of the solution, we start with that then prove that it is correct.

 - Recursion-tree method: If we don’t have a good guess of the solution, looking at the recursion tree can help us. Then, we prove it is correct with the substitution method.

 - Master method: Provides solutions for recurrences of the form:
 \[T(n) = aT(n/b) + f(n) \]

- The substitution method: Guess the form of the solution. Assume it’s correct and show that the solution is appropriate using a proof by induction.
\[T(n) = \begin{cases}
 d & \text{if } n = 1 \\
 T(n/2) + d & \text{otherwise}
\end{cases} \]

Halves the input at each iteration and does a constant amount of work, e.g. binary search - Guess: \(O(\log_2 n) \)

To show that \(T(n) = O(\log_2 n) \), we need to find constants \(c \) and \(n_0 \) such that \(T(n) \leq c \log_2 n \) for all \(n \geq n_0 \)

We’ll find the constants and do the proof by induction at the same time.

Base case:

* \(n = 1 ? \)

\[T(1) = d \leq c \log_2 1 \leq c \cdot 0 \quad ? \]

* \(n = 2 ? \)

\[T(2) = 2d \leq c \log_2 2 \leq c \]

which is true if \(c \geq 2d \).

Inductive case:

Assume \(T(k) \leq c \log k \) for \(k < n \) and show \(T(n) \leq c \log n \) for some constant \(c > 0 \).

\[
T(n) = T(n/2) + d \\
\leq c \log_2 (n/2) + d \quad \text{ (by induction)} \\
= c \log_2 n - c \log_2 2 + d \\
= c \log_2 n - c + d \\
\leq c \log_2 n
\]

if \(c \geq d \). So, for \(c \geq 2d \) and \(n_0 = 2 \), \(T(n) \leq c \log_2 n \) for all \(n \geq n_0 \)
so, \(T(n) = O(\log_2 n) \)
- $T(n) = \begin{cases}
 d & \text{if } n = 1 \\
 T(n) = T(n-1) + n & \text{otherwise}
\end{cases}$

At each iteration, iterates over all n, reducing the size by one element at each step, e.g. Insertion-Sort - $O(n^2)$

Base case:

$n = 1$?

\[
T(1) = d \leq c1^2 = c
\]

which is true if $c \geq d$

Inductive step:

Assume $T(k) \leq ck^2$ for $k < n$ and show $T(n) \leq cn^2$ for some constant $c > 0$.

\[
T(n) = T(n-1) + n \\
\leq c(n-1)^2 + n \\
= c(n^2 - 2n + 1) + n \\
= cn^2 - 2cn + c + n \\
\leq cn^2
\]

if

\[
-2cn + c + n \leq 0 \\
-2cn + c \leq -n \\
c(-2n + 1) \leq -n \\
c \geq \frac{n}{2n-1} \\
c \geq \frac{1}{2 - 1/n}
\]

which is true for any $c \geq 1$ for $n \geq 1$. So, for $c \geq d$ (assuming $d \geq 1$) and $n_0 = 1$, then $T(n) \leq cn^2$ for all $n \geq n_0$, so $T(n) = O(n^2)$.

3
- $T(n) = 2T(n/2) + n$
 Recurses into 2 sub-problems that are half the size and performs some operation on all of the elements, e.g. Merge-Sort
 - $O(n \log n)$

\[
T(n) = 2T(n/2) + n \\
\leq 2cn/2 \log(n/2) + n \\
= 2cn/2 \log n - 2cn/2 \log 2 + n \\
\leq cn \log n - cn + n
\]

if $cn \geq n$, i.e. $c \geq 1$
- Some other tricks
 * Lower order constants
 * Changing variables

- Recursion-tree method

Sometimes it is difficult to guess the correct answer to the recurrence. We can look at the tree of recursion calls to get at the correct answer.

$T(n) = 3T(n/4) + n^2$

Recursion tree:

- level 0 - cn^2
- level 1 - $c(\frac{n}{4})^2 + c(\frac{n}{4})^2 + c(\frac{n}{4})^2 = c\frac{3}{16}n^2$
- level 2 - $c(\frac{n}{16})^2 \ldots = c(\frac{3}{16})^2 n^2$
- level d - $c(\frac{3}{16})^d n^2$

What is the depth of the tree?

The end of the recursion occurs when:

\[
\frac{n}{4^d} = 1 \\
\log(n/4^d) = 0 \\
\log n - \log 4^d = 0 \\
\log n - d \log 4 = 0 \\
\log_4 n - d = 0 \\
\]

\[
d = \log_4 n
\]
What is the cost of the final level?

$T(1)$ for each node and there are

\[3^d = 3^{\log_4 n} = 4^{\log_4 3^{\log_4 n}} = 4^\log_4 n \log_4 3 = 4^\log_4 n \log_4 3 = n^\log_4 3 \]

leaves. For a total cost of $\theta(n^{\log_4 3})$ at the bottom level.

The sum of the costs of the entire tree is the cost of the recurrence relation.

\[
T(n) = cn^2 + \frac{3}{16} cn^2 + \left(\frac{3}{16}\right)^2 cn^2 + \cdots + \left(\frac{3}{16}\right)^{d-1} cn^2 + \theta(n^{\log_4 3})
\]

\[
= cn^2 \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i + \theta(n^{\log_4 3})
\]

\[
= \frac{(3/16)^{\log_4 n} - 1}{(3/16) - 1} cn^2 + \theta(n^{\log_4 3})
\]

where we obtain the last line from $\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$ and let $x = \frac{3}{16}$ and $k = \log_4 n - 1$

- Master method - Provides solutions to recurrences of the form $T(n) = aT(n/b) + f(n)$

Many different versions out there ([3] pg. 49)

\[T(n) = aT(n/b) + O(n^d) \]

\[
T(n) = \begin{cases}
O(n^d) & \text{if } d > \log_b a \\
O(n^d \log n) & \text{if } d = \log_b a \\
O(n^{\log_b a}) & \text{if } d < \log_b a
\end{cases}
\]

The one we’ll use:

5
\[T(n) = aT(n/b) + f(n) \]

- if \(f(n) = O(n^{\log_b a - \epsilon}) \) for \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \)
- if \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a} \log n) \)
- if \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for \(c < 1 \)
 then \(T(n) = \Theta(f(n)) \)

- Examples (adapted from [1])
 - \(T(n) = 16T(n/4) + n \)
 \(a = 16 \)
 \(b = 4 \)
 \(f(n) = n \)

\[n^{\log_b a} = n^{\log_4 16} = n^2 \]

Is \(f(n) = O(n^{2-\epsilon}) \)?
Is \(f(n) = \Theta(n^2) \)?
Is \(f(n) = \Omega(n^{2+\epsilon}) \)?

Case 1: \(\Theta(n^2) \)
- \(T(n) = T(n/2) + 2^n \)
 \(a = 1 \)
 \(b = 2 \)
 \(f(n) = 2^n \)

\[n^{\log_b a} = n^{\log_2 1} = n^0 \]

Is \(f(n) = O(n^{0-\epsilon}) \)?
Is \(f(n) = \Theta(n^0) \)?
Is \(f(n) = \Omega(n^{0+\epsilon}) \)?
 Is \(2^{n/2} \leq c2^n \)?

Case 3: \(\Theta(2^n) \)
$T(n) = 2T(n/2) + n$
\[a = 2\]
\[b = 2\]
\[f(n) = n\]

$n^{\log_b a} = n^{\log_2 2} = n$

Is $f(n) = O(n^{1-\epsilon})$?
Is $f(n) = \Theta(n^1)$?
Is $f(n) = \Omega(n^{1+\epsilon})$?

Case 2: $n \log n$

$T(n) = 16T(n/4) + n!$
\[a = 16\]
\[b = 4\]
\[f(n) = n!\]

$n^{\log_b a} = n^{\log_4 16} = n^2$

Is $f(n) = O(n^{2-\epsilon})$?
Is $f(n) = \Theta(n^2)$?
Is $f(n) = \Omega(n^{2+\epsilon})$?

Is $16(n/4)! \leq cn!$ for all sufficiently large n?

Case 3: $\Theta(n!)$

$T(n) = \sqrt{2}T(n/2) + \log n$
\[a = 2^{\frac{1}{2}}\]
\[b = 2\]
\[f(n) = \log n\]

$n^{\log_b a} = n^{\log_2 2^{\frac{1}{2}}} = n^{\frac{1}{2}} = \sqrt{n}$
Is $f(n) = O(n^{5-\epsilon})$?
Is $f(n) = \Theta(n^{5})$?
Is $f(n) = \Omega(n^{5+\epsilon})$?

Case 1: $\Theta(\sqrt{n})$
- $T(n) = 4T(n/2) + n$
 - $a = 4$
 - $b = 2$
 - $f(n) = n$

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

Is $f(n) = O(n^2)$?
Is $f(n) = \Theta(n^2)$?
Is $f(n) = \Omega(n^{2+\epsilon})$?

Case 1: $\Theta(n^2)$

These notes are adapted from material found in chapter 4 [2].

References