“For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing.”
– Francis Sullivan

What is an algorithm?

Examples

– sort a list of numbers
– find a route from one place to another (cars, packet routing, phone routing, ...)
– find the longest common substring between two strings
– add two numbers
– microchip wiring/design (VLSI)
– solving sudoku
– cryptography
– compression (file, audio, video)
– spell checking
– pagerank
– classify a web page
– ...

What properties of algorithms are we interested in?

– does it terminate?
– is it correct, i.e. does it do what we think it’s supposed to do?
– what are the computational costs?
– what are the memory/space costs?
- what happens to the above with different inputs?
- how difficult is it to implement and implement correctly?

• Why are we interested? Most of the algorithms/data structure we will discuss have been around for a while and are implemented. Why should we study them?

 - For example, look at the java.util package
 * Hashtable
 * LinkedList
 * Stack
 * TreeSet
 * Arrays.binarySearch
 * Arrays.sort
 - Know what’s out there/possible/impossible
 - Know the right algorithm to use
 - Tools for analyzing new algorithms
 - Tools for developing new algorithms
 - interview questions? :)

 * Describe the algorithm for a depth-first graph traversal.
 * Write a function f(a, b) which takes two character string arguments and returns a string containing only the characters found in both strings in the order of a. Write a version which is O(n^2) and one which is O(n).
 * You’re given an array containing both positive and negative integers and required to find the sub-array with the largest sum (O(n) a la KBL). Write a routine in C for the above.
 * Reverse a linked list
 * Insert in a sorted list
 * Write a function to find the depth of a binary tree
 * ...

 - Personal experience: Understanding and developing new algorithms has been one of the most useful tools/skills for me.
 * Hierarchical clustering
 * Perceptron learning algorithm
 * Sparse vector manipulation
• Pseudocode

- A way to discuss how an algorithm works that is language agnostic and without being encumbered with actual implementation details.
- Should give enough detail for a person to understand, analyze and implement the algorithm.
- Conventions

Mystery1(A)
1 $x \leftarrow -\infty$
2 for $i \leftarrow 1$ to $\text{length}[A]$ \\
3 if $A[i] > x$ \\
4 $x \leftarrow A[i]$
5 return x

Mystery2(A)
1 for $i \leftarrow 1$ to $\lfloor \text{length}(A)/2 \rfloor$
2 swap $A[i]$ and $A[\text{length}(A) - (i - 1)]$

- Comments
 * array indices start at 1 not 0
 * we may use notation such as ∞, which, when translated to code, would be something like Integer.MAX_VALUE
 * use shortcuts for simple function (e.g. swap) to make pseudocode simpler
 * we’ll use \leftarrow instead of $=$ to avoid ambiguity
 * Indentation specifies scope

• Sorting

Input: An array of numbers A
Output: The array of numbers in sorted order, i.e. $A[i] \leq A[j] \forall i < j$

- cards
* sort cards: all cards in view
* sort cards: only view one card at a time

- Insertion sort

Insertion-Sort

1. \textbf{for} \(j \leftarrow 2 \) \textbf{to} \(\text{length}[A] \)
2. \hspace{1em} \(\text{current} \leftarrow A[j] \)
3. \hspace{1em} \(i \leftarrow j - 1 \)
4. \hspace{1em} \textbf{while} \(i > 0 \) \text{ and } A[i] > \text{current} \)
5. \hspace{2em} \(A[i + 1] \leftarrow A[i] \)
6. \hspace{2em} \(i \leftarrow i - 1 \)
7. \hspace{1em} \(A[i + 1] \leftarrow \text{current} \)

- Does it terminate?
- Is the algorithm correct?

Loop invariant: A statement about the algorithm that is always true regardless of where we are in the algorithm

Insertion-Sort invariant: At the start of each iteration of the \textbf{for} loop of lines 1-7 the subarray \(A[1..j-1] \) is the sorted version of the original elements of \(A[1..j-1] \)

To prove, need to show two things:
* Base case: invariant is true before the loop
* Inductive case: it is true after each iteration

upon termination of the loop, the invariant should help you show something useful about the algorithm.

Proof

- Running time: How long does it take? How many computational "steps" will be executed?

What is our computational model? Turing machine? We'll assume a random-access machine (RAM) model of computation.

Examine costs for each step
\[T(n) = c_1 n + c_2 (n-1) + c_3 \sum_{j=2}^{n} t_j + c_4 \sum_{j=2}^{n} (t_j - 1) + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 (n - 1) \]

* Best case: array is sorted
 \[t_j = 1 \]
 \[\sum_{j=2}^{n} = n - \text{Linear} \]
* Worst case: array is in reverse sorted order
 \[t_j = j \]
 \[\sum_{j=2}^{n} = n + n - 1 + n - 2 + \cdots + 2 = \frac{n(n+1)}{2} - 1 - \text{Quadratic} \]
* Average case: array is in random order
 The array up through \(j \) is sorted. How many entries on average will we have to analyze before in the sorted portion of the array to find the correct location for the current element?
 \[t_j = j/2 \]
 \[\sum_{j=2}^{n} = \frac{n(n+1)}{2} - 1/2 - \text{Quadratic} \]
* Can we do better? What about if we used binary search to find the correct position?

- **Divide and Conquer**
 - *Divide* the problem into smaller subproblems
 - *Conquer* the subproblems by solving the subproblems. Often this just involves waiting until the problem is small enough that it is trivial to solve.
 - *Combine* the divided subproblems into a final solution.

Merge-Sort(A)

```
1   if length[A] == 1
2       return A
3 else
4       q ← ⌊length[A]/2⌋
5       create arrays L[1..q] and R[q+1..length[A]]
6       copy A[1..q] to L
7       copy A[q+1..length[A]] to R
8       LS ← Merge-Sort(L)
9       RS ← Merge-Sort(R)
10      return Merge(LS, RS)
```
Merge(L, R)
1. create array B of length $\text{length}[L] + \text{length}[R]$
2. $i \leftarrow 1$
3. $j \leftarrow 1$
4. for $k \leftarrow 1$ to $\text{length}[B]$
5. if $j > \text{length}[R]$ or $(i \leq \text{length}[L] \text{ and } L[i] \leq R[j])$
6. $B[k] \leftarrow L[i]$
7. $i \leftarrow i + 1$
8. else
9. $B[k] \leftarrow R[j]$
10. $j \leftarrow j + 1$
5. return B

– Is the algorithm correct?

Merge invariant: At the end of each iteration of the for loop of lines 4-10 the subarray $B[1..k]$ contains the smallest k elements from L and R in sorted order.

Proof?

– Running time

$$T(n) = \begin{cases}
 c & \text{if } n \text{ is small} \\
 2T(n/2) + D(n) + C(n) & \text{otherwise}
\end{cases}$$

$D(n)$ Divide: copy the input array into two halves - linear, $\Theta(n)$
$C(n)$ Combine: merges the two sorted halves - linear, $\Theta(n)$

$$T(n) = \begin{cases}
 c & \text{if } n \text{ is small} \\
 T(n/2) + cn & \text{otherwise}
\end{cases}$$

Analyze the tree on pg. 35
$cn \log n + cn$

Merge-Sort2(A, p, r)
1. if $p < r$
2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
3. Merge-Sort2(A, p, q)
4. Merge-Sort2($A, q + 1, r$)
5. Merge2(A, p, q, r)
\textbf{MERGE2}(A, p, q, r)\\
1 \hspace{0.5cm} n_1 \leftarrow q - p + 1 \hspace{0.5cm} \triangleright \text{ length of the left array}\\
2 \hspace{0.5cm} n_2 \leftarrow r - q \hspace{0.5cm} \triangleright \text{ length of the right array}\\
3 \hspace{0.5cm} \text{create arrays } L[1..n_1 + 1] \text{ and } R[1..n_2 + 1]\\
4 \hspace{0.5cm} \textbf{for } i \leftarrow 1 \textbf{ to } n_1\\
5 \hspace{1cm} L[i] \leftarrow A[p + i - 1]\\
6 \hspace{0.5cm} \textbf{for } j \leftarrow 1 \textbf{ to } n_2\\
7 \hspace{1cm} R[j] \leftarrow A[q + j]\\
8 \hspace{0.5cm} L[n_1 + 1] \leftarrow \infty\\
9 \hspace{0.5cm} R[n_2 + 1] \leftarrow \infty\\
10 \hspace{0.5cm} i \leftarrow 1\\
11 \hspace{0.5cm} j \leftarrow 1\\
12 \hspace{0.5cm} \textbf{for } k \leftarrow p \textbf{ to } r\\
13 \hspace{1cm} \textbf{if } L[i] \leq R[j]\\
14 \hspace{1.5cm} A[k] \leftarrow L[i]\\
15 \hspace{1.5cm} i \leftarrow i + 1\\
16 \hspace{1cm} \textbf{else}\\
17 \hspace{1.5cm} A[k] \leftarrow R[j]\\
18 \hspace{1.5cm} j \leftarrow j + 1\\

– Is the algorithm correct?\\
– Running time\\
\hspace{0.5cm} \text{Same as } \text{MERGE-SORT except } D(n) = c\\

This still results in:\n\[T(n) = 2T(n/2) + cn \]

– What are the memory/space costs of the two merge sort algorithms?\\
\hspace{0.5cm} \text{Memory usage is different than time usage: we can reuse memory!}\\
\hspace{0.5cm} \text{In general, we’re interested in maximum memory usage, but may also be interested in average memory usage while processing.}\\
– How hard are the two merge sort versions to implement/debug?\\

• Bubble sort
Bubble-Sort(A)
1 sorted ← false
2 while sorted = false
3 sorted ← true
4 for i ← 1 to length[A] − 1
5 if A[i] > A[i + 1]
6 swap A[i] and A[i + 1]
7 sorted ← false

These notes are adapted from material found in chapters 1 + 2 of [1].

References