
CS161 - Greedy Algorithms

David Kauchak

• Greedy approach

Make locally optimal decisions. Ideally, this would create a globally
optimal solution. Sometimes, it doesn’t, but it produces a reasonable
solution that is computationally tractible.

• MST was a greedy algorithm

Both Kruskall’s and Prim’s algorithm made a greedy selection for the
next edge to add to the MST.

• Interval scheduling

We are given a set of n activities A = [a1, a2, ..., an] where each activity
has a start time si and a finish time fi. We would like to schedule as
many of these activities for a shared resource. The only constraint is
that no two activities can be scheduled at the same time.

Example

A recursive solution:

IntervalSchedule-Recursive(A)

1 if A = {}
2 return 0
3 else

4 max = −∞
5 for all a ∈ A

6 A′ ← A minus a and all conflicting activites with a

7 s = IntervalSchedule-Recursive(A′)
8 if s > max

9 max = s

10 return 1 + max

1

– Is it correct?

The algorithm tries all possible sets and returns max.

– Runtime

Worst case, how many recursive calls are made?

O(n!)

We’ll see next week that we can do better with dynamic program-
ming methods O(n2)

Can we do better than this?

Rather than trying to examine all possible solutions, can we make
some locally greedy solution and still end up at the optimal solution?

Some ideas:

– Select the activity that starts the earliest, i.e. argmin{s1, s2, ..., sn}

counter-example: one long activity that starts the earliest

– Select the shortest activity, i.e. argmin{f1−s1, f2−s2, ..., fn−sn}

counter-example: one short active that conflicts with two longer

– Select the activity with the smallest number of conflicts

counter-example?

– Select the activity that finishes first, i.e. argmin{f1, f2, ..., fn}

IntervalSchedule-Greedy(A)

1 sort A based on finish times fi

2 for i← 1 to n

3 add ai to R

4 finish← fi

5 while si < finish

6 i← i + 1
7 return R

– Is it correct?

Let r1, r2, r3, ..., rk be the solution produced by IntervalSchedule-Greedy

in sorted order, with starting time s(ri) and end times f(ri).

2

Is there any way we could do better?

Let’s say some other algorithm picks a different starting activity,
o1. By definitiion, this activity would have to have a finishing
time later than the one selected by IntervalSchedule-Greedy.

Since f(r1) < f(o1), then the remaining time interval to sched-
ule the other activies must be larger for our algorithm than the
alternate algorithm. Since o1 is the first selection, then all other
activities selected by the alternate algorithm must be after o1.
Therefore, since our algorithm has a larger time interval to sched-
ule, there is no way the alternative algorithm could do better.
This argument can be applied recursively.

– Runtime

- Sort the algorithm by activities: O(n log n)

- Visit each activity once: O(n)

O(n log n)

• Greedy algorithms structure

Greedy algorithms tend to exhibit the structure that we saw above:
a locally optimal decision can be made which results in a subproblem
that does not rely on the local decision.

For proofs, we just need to argue that the combination of the soluu-
tion to the subproblem and the greedy decision result in an optimal
solution.

• Scheduling all intervals

Same as above, we are given n activities, however, instead of having
only a single resource, we have as many resources as we want. We want
to schedule the activities using the minimum number of resources.

Example

What is the minimum number of resources needed? The minimum is
the maximum number of overlapping interval at any time.

3

AllIntervalScheduleCount(A)

1 Sort the start and end times, call this X

2 current← 0
3 max← 0
4 for i← 1 to length[X]
5 if xi is a start node
6 current + +
7 else

8 current−−
9 if current > max

10 max← current

11 return max

– Is it correct?

The algorithm above exactly counts the number of activities oc-
curing during a time interval.

Therefore, the worst case number of labels used is the maximum
number of conflicting activities. Since the best case scenario is the
maximum number of conflicting activities, this algorithm achieves
the optimal.

– runtime

- sorting the end and start times: 2n log(2n) = O(n log n)

- Iterate over all start and finish intervals: 2n

O(n log n)

• Horn formulas

4

Horn(H)

1 set all variables to false

2 for all implications i

3 if Empty(LHS(i))
4 RHS(i)← true

5 changed← true

6 while changed

7 changed← false

8 for all implications i

9 if LHS(i) = true and !RHS(i) = true

10 RHS(i)← true

11 changed = true

12 for all negative clauses c

13 if c = false

14 return false

15 return true

• Knapsack problems

– 0-1 Knapsack problem

A thief robbing a store finds n items worth v1, v2, ..., vn dollars
and weigh w1, w2, ..., wn pounds, where vi and wi are integers.
The thief can only carry at most W pounds in the knapsack.
Which items should the thief take if he wants to maximize the
value?

– Fractional knapsack problem

Same as above, but the thief happens to be at the bulk section
of the store and can carry fractional portions of the items. For
example, the thief could take 20% of item i for a weight of 0.2wi

and a value of 0.2vi.

Is a greedy approach appropriate for these problems?

• Huffman coding

Data compression - Given a file containing some data of a fixed al-
phabet Σ (e.g. A,B,C,D), we would like to pick a binary character
code that minimizes the number of bits required to represent the data.

5

Fixed length codes:

A = 00
B = 01
C = 10
D = 11

Take the following data:

Symbol Frequency

A 70
B 3
C 20
D 37

(adapted from pg. 140 [3])

The number of bits required to encode this using the above encoding is:

2 ∗ 70 + 2 ∗ 3 + 2 ∗ 20 + 2 ∗ 37 = 260

Can we do better? We’d like to use a smaller number of bits for the
frequently occuring symbols.

Variable length code:

A = 0
B = 01
C = 10
D = 1

Is this a valide code? What about decoding?

A = 0
B = 100
C = 101
D = 11

6

The number of bits required using this encoding:

70 + 3 ∗ 3 + 3 ∗ 20 + 2 ∗ 37 = 213

which is a 20% reduction.

prefix codes

A prefix code is a set of codes where no codeword is a prefix of some
other codeword. Using prefix codes, we can simply concatenate the
bits. To decode, we read them off from the prefix tree.

Show prefix tree

In generaly, a prefix tree encoding can be represented as a full binary
tree, that is a tree where every node has either 0 or 2 children. Each
child of the tree represents an encoding of some symbol. Why?

Given the frequencies of the symbols F = f1, f2, ..., fn, we can calculate
the cost of the tree, which is the number of bits required as:

cost(T) =
n∑

i=1

fi ∗ depth(i)

Another way of writing this is to consider internal nodes. We can
define the cost of the internal nodes as the sum of the frequencies of
the descendant leaves. This is the number of times a node is visited
during decoding. As we move down the tree, one bit gets read for
every nonroot node.

Given this, the total cost of the tree is the sum of the frequencies of
all leaves and internal nodes, except the root.

7

Huffman(F)

1 Q←MakeHeap(F)
2 for i← 1 to |Q| − 1
3 allocate a new node z

4 left[z]← x← ExtractMin(Q)
5 right[z]← y ← ExtractMin(Q)
6 f [z]← f [x] + f [y]
7 Insert(Q, z)
8 return ExtractMin(Q)

Example

– Is it correct?

The algorithm greedily selects the two smallest frequency sym-
bols first. These two symbols have to be at the bottom of the
tree. Why?

Consider a tree where a lowest frequency symbol was not at the
bottom. Swapping this symbol with the lowest frequency symbol
would result in a tree with a lower cost, so that tree cannot be
optimal.

The algorithm then merges the cost of these nodes and creates a
new frequency f1+f2 (we’ll assume f1 and f2 are the two smallest
frequencies). This can now be viewed as a new encoding problem
with frequencies F ′ = (f1 + f2), f3, f4, ..., fn.

– Runtime

- 1 call to MakeHeap - O(n)

- 2(n − 1) calls to ExtractMin - (2n − 2) log n = O(n log n)

O(n log n)

• Set Cover

These notes are adapted from material found in chapter 16 of [1], chapter 4
of [2] and chapter 5 of [3].

References

8

[1] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest and Clifford
Stein. 2007. Introduction to Algorithms, 2nd ed. MIT Press.
[2] Jon Kleinberg and Eva Tardos. 2006. Algorithm Design. Pearson Edu-
cation, Inc.
[3] Sanjoy Dasgupta, Christos Papadimitiou and Umesh Vazirani. 2008.
Algorithms. McGraw-Hill Companies, Inc.

9

