
CS 161 Summer 2009

Homework #1 Sample Solutions

Regrade Policy: If you believe an error has been made in the grading of your homework,
you may resubmit it for a regrade. If the error consists of more than an error in addition of
points, please include with your homework a detailed explanation of which problems you
think you deserve more points on and why. We reserve the right to regrade your entire
homework, so your final grade may either increase or decrease.

Problem 1 [5 points]

For arrays of types like byte, char, double, float, int, long, and short, java.util.Arrays uses
a quicksort algorithm. For arrays of the general Object type, it uses a mergesort algorithm.
The source of this information was
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Arrays.html.

Problem 2 [10 points]

A1: Θ(n3). You can see this by noticing that when n doubles, the data points grow by
a factor of 8 (which is 23), meaning that when x grows by a factor of n, f(x) grows by a
factor of n3, meaning this is Θ(n3).
A2: Θ(1). Notice that no matter how x grows, f(x) does not vary significantly, meaning
that the function does not depend on the growth rate of x, so it must be Θ(1).
A3: Θ(n). Notice that when n doubles, the data points also double, meaning that f(x)
grows as the same rate as x grows, so it must be Θ(n).
A4: Θ(log(n)). If you plot this on a log− log scale, you get a straight line, meaning this is
Θ(log(n)).
A5: Θ(n2). You can see this by noticing that when n doubles, the data points grow by
a factor of 4 (which is 22), meaning that when x grows by a factor of n, f(x) grows by a
factor of n2, meaning this is Θ(n2).

A6: Θ(n log n). When n doubles, the ratio 2n log(2n)
n log n is between 2.2 and 2.14, gradually

declining when 1000 ≤ n ≤ 16000. That is close to the real data points.

1



2

Alternative answer: Θ(n1.15). Notice that when n doubles, the data points grow by a factor
of approximately 21.15, meaning that when x grows by a factor of n, f(x) grows by a factor
of n1.15, meaning this is Θ(n1.15). You can figure out the factor of 1.15 by looking at pairs
of datapoints, and solving the equation factor = log(y2/y1)

log(x2/x1) , where (x1, y1) and (x2, y2) are
two datapoints. Solving this for each consecutive pairs of points in the data gives factors
of 1.13, 1.18, 1.11, 1.18, and 1.12, which are all around 1.15.

Problem 3 [10 points]

(7, 106), log log n, 3
√

log n, (n, 5n+20), 1
2n log(n+5), (3n)2, n5, nlog n, (3

2)n, 3n, n3n, n!, nn, 33n

Most of the ranking is straightforward.
Asymptotic bounds for Stirling’s formula are helpful. n! = Θ(nn+1/2e−n)

Problem 4 [15 points] Big O

(a) (5 points) 15n3 log n+10n2 +50 < 15n3 log n+10n3 log n = 25n3 log n when n >= 4.
Thus by definition, 15n3 log n + 10n2 + 50 = O(n3 log n).

(b) (10 points)
Upper bound, since n! < nn, thus log(n!) < log(nn) = n log n.
log(n!) = O(n log n).
Lower bound, since (n!)2 = (n)2(n − 1)2 . . . 2212 >= (n/2)n (just take the first n
items), thus (n!) >= (n/2)(n/2), log(n!) >= n/2 log(n/2) = n/2 log n − n/2 log 2,
log(n!) = w(n log n).
Therefore, log(n!) = Θ(n log n) .

Problem 5 [40 points]

(a) (5 points) The pseudocode is shown in Algorithm 1.

Worst-case running time: O(n log n + m log m + n + m), which equals O(n log n +
m log m).

(b) (10 points) The pseudocode is shown in Algorithm 2.

Worst-case running time: O(m + n + l), where l = length(A),m = length(B), n =
length(C).

(c) (5 points) The pseudocode is shown in Algorithm 3.

Worst-case running time: O(n log3 n), where n = length(A).



CS161 Homework #1 Sample Solutions 3

Algorithm 1 INTERSECTION(A,B)
1: MERGE-SORT(A)
2: MERGE-SORT(B)
3: Create a new output array, named C
4: Let a ← 1; b ← 1
5: while (a <= length(A) && b <= length(B)) do
6: if (A[a] < B[b]) then
7: a + +
8: else if (A[a] > B[b]) then
9: b + +

10: else
11: Append A[a] to the end of C
12: a + +; b + +
13: end if
14: end while
15: return C

Algorithm 2 MERGE3(A,B,C)
1: Let a ← 1; b ← 1; c ← 1
2: Extend lists A, B and C by 1 element each, and set those new elements to infinity
3: Create a new output array, named D of size lengh(A) + lengh(B) + lengh(C)
4: while (d <= length(D)) do
5: if (A[a] < B[b]) then
6: if (A[a] < C[c]) then
7: D[d] ← A[a]
8: a + +; d + +
9: else

10: D[d] ← C[c]
11: c + +; d + +
12: end if
13: else
14: if (B[b] < C[c]) then
15: D[d] ← B[b]
16: b + +; d + +
17: else
18: D[d] ← C[c]
19: c + +; d + +
20: end if
21: end if
22: end while
23: return D



4

Algorithm 3 MERGE3-SORT(A)
1: if length(A) <= 1 then
2: return A
3: end if
4: Let a ← b1

3 length(A)c; b ← b2
3 length(A)c

5: Create 3 new arrays B,C,D
6: B← A[1 . . . a]; C← A[a + 1 . . . b];D← A[b + 1 . . . length(A)]
7: //comment: a may be 0, in which case just let B be a zero length array.
8: MERGE-SORT(B)
9: MERGE-SORT(C)

10: MERGE-SORT(D)
11: return MERGE3(B,C,D)

Algorithm 4 FIND-IDENTITY(A[1, . . ., n])
1: if n == 0 then
2: return null
3: end if
4: if n == 1 then
5: if A[1] == 1 then
6: return 1
7: else
8: return null
9: end if

10: end if
11: if A[bn/2c] < bn/2c then
12: return FIND-IDENTITY(A1[1, . . . , bn/2c])
13: else if A[bn/2c] > bn/2c then
14: return FIND-IDENTITY(A2[(bn/2c+ 1), . . . , n])
15: else
16: return bn/2c
17: end if



CS161 Homework #1 Sample Solutions 5

(d) (10 points) The pseudocode is shown in Algorithm 4. Worst-case running time:
O(log n), where n = length(A).

(e) (10 points) The pseudocode is shown in Algorithm 5.

Algorithm 5 FIND-MAJORITY(A)
1: if length(A) = 0 then
2: return null
3: end if
4: if length(A) = 1 then
5: return 1
6: end if
7: Call FIND-MAJORITY recursively on the first half of A, and let i be the result.
8: Call FIND-MAJORITY recursively on the second half of A, and let j be the result.
9: if i > 0 then

10: compare object i to all objects in A(including itself), and let k be the number of
times that equality holds;

11: if k > length(A)/2 then
12: return i.
13: end if
14: end if
15: if j > 0 then
16: compare object j to all objects in A(including itself), and let k be the number of

times that equality holds;
17: if k > length(A)/2 then
18: return j
19: end if
20: end if
21: return null.

Worst-case running time:O(n log n).
Let T (n) denote the largest number of equality tests required by FIND-MAJORITY on an
array of n objects. If n = 1 then no equality tests are performed. If n ≥ 2, then steps 2
and 3 require at most T (n/2) equality tests each, which steps 4 and 5 each use n equality
tests. Thus, T (1) = 0 and T (n) ≤ 2T (n/2) + 2n for all n ≥ 2 that are powers of 2. Using
the Master Theorem, it follows that T (n) = O(n log n).

Remarks. One common error is to run original MERGE-SORT algorithm first, and then
count for consecutive and equal elements. This approach does not meet the requirements,
since natural ordering < or > operations are needed in the original MERGE-SORT algo-
rithm.



6

Extra Credit

We will give an algorithm to solve this problem which uses an auxiliary stack. The following
is the pseudocode for the algorithm.

Algorithm 6 FIND-MAJORITY-ELEMENT(A)
1: for i = 1 to length[A] do
2: if stack is empty then
3: push A[i] on the stack
4: else if A[i] equals top element on the stack then
5: push A[i] on the stack
6: else
7: pop the stack
8: end if
9: end for

10: if stack is empty then
11: return null
12: end if
13: candidate ← top element on the stack
14: counter ← 0
15: for i = 1 to length[A] do
16: if A[i] equals candidate then
17: counter ← counter + 1
18: end if
19: end for
20: if counter > blength[A]/2c then
21: return candidate
22: else
23: return null
24: end if

The procedure first generates a candidate object from the array. It finds this element using
the stack by looping over the array. If the stack is empty or the current element is the
same as the top object on the stack, the element is pushed onto the stack. If the top object
of the stack is different from the current element, we pop that object off the stack.

Claim: If a majority element exists, it will be on the stack at the end of this part of the
procedure.

Proof: (by contradiction) Call the majority element x and say it appears i > bn/2c times.
Each time x is encountered, it is either pushed on the stack or an element (different from



CS161 Homework #1 Sample Solutions 7

x) is popped off the stack. There are n− i < i elements different from x. Assume x is not
on the stack at the end of the procedure. Then, each of the i elements of x must have either
popped another element off the stack, or been popped off by another element. However,
there are only n− i < i other elements, so this is a contradiction. Therefore, x must be on
the stack at the end of the procedure.
Notice that this proof does not show that if an element is on the stack at the end of
the procedure that it is the majority element. We can construct simple counterexamples
(A = [1, 2, 3]) where this is not the case. Therefore, after obtaining our candidate majority
element solution, we check whether it is indeed the majority element (lines 9-16). We do
this by scanning through the array and counting the number of times the element candidate
appears. We return candidate if it appears more than bn/2c times, else we report that no
majority element exists. This procedure scans through the array twice and does a constant
amount of computation (pushing and popping elements on the stack take constant time)
at each step. Therefore the running time is T (n) = cn = Θ(n).

Alternative Solution: Divide and Conquer. Randomly pair up the elements. For each
pair, if they match, keep one of them. If they don’t, discard both of them. Continue this
process until one or no element left.

Remarks: Some students may use hashmap/hashtabel to finish the task. Partial credits
will be given for this approach. Note that Lookup() function in hashmap takes O(1)-time on
average. But the worst-case lookup time can be as bad as O(n). The worst-case expected
running time of the algorithm would be linear if we view it as a randomized algorithm.
But for this problem we are looking for a deterministic algorithm.


