(CS161 - Homework 1
Due: Thursday July 2, 5:00pm

1. (5 points) What sorting method does the function SORT use from
java.util.Arrays? Make sure to cite your source. Why do you think
this is the case?

2. (10 points) The table below contains run times for 6 different algo-
rithms. The input sizes ranged from 1000 to 32000 seen at the top
of the table. For each of the algorithms, give the 6§ complexity of the
algorithms based on the running times and include a brief explaination
for your answer.

Algorithm | 1000 | 2000 | 4000 | 8000 16000 32000
Ay 20 378 | 3,345 | 26,300 | 215,680 | 1,658,002
As 99 110 | 105 976 103 100
Az 60 130 | 237 501 954 1999
Ay 1005 | 1095 | 1201 | 1289 1420 1540
As 5 21 84 311 1304 5280
Ag 10 22 50 108 245 533

3. (10 points) Arrange the functions below in ascending order of growth
rate. Specifically, if f(n) = O(g(n)) then f(n) should be before g(n) in
the list. If two functions are asympotically equal, i.e. f(n) = 0(g(n))
then note this in the list by including all elements in a set. For exam-
ple, given: n,logn, n+4, and n? the list would be: logn, (n,n+4),n>.

()" 7 5n + 20 33"

n 3" nJ" n®

n! gViegn plogn snlog(n +5)
108 n" (3n)? loglogn

4. (15 points) Big O

(a) (5 points) Show that 15n%logn + 10n? 4+ 50 = O(n®logn).

(b)

(10 points) Show that log(n!) = O(nlogn). (Hint: To show
an upper bound, compare n! with n™. To show a lower bound,
compare it with (n,/2)("/2)))

5. (40 points) For the following problems, write pseudocode solutions
and state the worse case running time:

(a)

(5 points) Given two lists of numbers A and B of lengths m and
n respectively, return the intersection of the lists, i.e. all those
numbers in A that also occur in B. You can use procedures that
we’ve discussed in class, but no others (e.g. no hashtables).

(10 points) Write a function MERGE3 that takes 3 sorted lists
and merges them into one list.

(5 points) Write a new merge sort procedure that uses MERGE3.
Calculate the overall runtime of this procedure including the calls
to MERGE3.

(10 points) Given a sorted list of integers A[l...n|, determine if
an entry exists such that A[i] = i. If an entry exists, return the
index, otherwise, return null. (Hint: You can do better than
O(n). Think divide-and-conquer.)

(10 points) In some situations, there is not a natural ordering do
the data but we can check equality (e.g. images). Given an array
of elements A, we would like to determine if there exists a value
that occurs in more than half of the entries of the array. If so,
return that value, otherwise, return null. Assume you can only
check equality of elements in the array which takes time O(1).

Extra Credit

(5 points) Find an algorithm for 5e. that is O(n).

Just for fun

7. (1 brownie point) Given two sorted arrays A and B of lengths m and
n respectively, return the kth smallest element in the union of the two
lists. Your runtime should be in terms of both m and n and should
not depend on k.

