
Transforming Introductory Computer
Science Projects via Real-Time Web Data

Austin Cory Bart
Virginia Tech

acbart@vt.edu

Eli Tilevich
Virginia Tech

tilevich@cs.vt.edu

Clifford A. Shaffer
Virginia Tech

shaffer@cs.vt.edu

Tony Allevato
Virginia Tech

allevato@vt.edu

Simin Hall
Virginia Tech

thall57@vt.edu

Abstract
Computing is becoming increasingly distributed. To better prepare
students for the challenges of the workplace, computing educa-
tors need to introduce issues pertaining to distributed computing.
Unfortunately, programming projects in introductory classes are
mostly divorced from the students day-to-day computing experi-
ences. These experiences entail interacting with real-time Web-
based data from sources including weather reports, news updates,
and restaurant recommendations. The disconnect between stu-
dent experience and the content of their programming projects
is known to drive some students away from computing. To ad-
dress this problem, we have created an architectural framework that
makes real-time web data accessible for introductory programming
projects. The framework effectively introduces important real-time
distributed computing concepts without overwhelming them with
the low-level details that working with such data typically requires.
Our preliminary results indicate that our approach can be effec-
tive in the context of a typical CS 2 data structures class. We are
currently working on extending, improving, and fine tuning our
toolchain to make our framework accessible to other classes in the
curriculum.

Categories and Subject Descriptors K.3.2 [Computer and Infor-
mation Science Education]: Computer Science Education

General Terms Design, Human Factors, Reliability, Experimen-
tation

Keywords real-time data, learning enhancement, projects, intro-
ductory

1. Introduction
Most peoples experience with computing today involves a conflu-
ence of distributed Web architectures and continuously updated,
remote data sources. College students are immersed in consum-
ing real-time Web-based data on their mobile devices. Examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SPLASH-E ’13 Oct 26–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM [to be supplied]. . . $15.00

abound. Weather information, traffic data, stock values, shopping
deals—all these real-time data sources are being made available
as remote Web-based services to be integrated into various ap-
plications written for a panoply of computing devices. Interacting
with Web-based real-time data influences the students perception of
what Computer Science is, the perception with which they embark
on studying the discipline.

Because of these developments, computing educators strive to
introduce issues related to real-time web data in the curriculum as
early as possible for two reasons. First, they would like to meet their
students expectations that Computer Science studies exciting top-
ics that are relevant to the students experiences as computer users.
Second, since distributed real-time data has entered the mainstream
of the majority of computing domains, students should be intro-
duced to the corresponding technical issues to prepare for the mod-
ern IT workforce. Indeed, the new ACM/IEEE Computer Science
Curriculum 2013 advises 10 hours of material on a new dedicated
Networking and Communication Knowledge Area [9].

Introducing real-time data is not only about increasing engage-
ment. Perhaps more important, it is an avenue for exploring com-
puting in a social context. The CS Curriculum 2013 emphasizes the
importance of Social Issues [9], prescribing 16 hours on topics such
as Social Context and Data Privacy. The ability to access real-world
data streams enables introductory learners to deal with real-world
problems. Consider assigning students to explore how geological
data about earthquakes can be used to aid disaster relief. Another
project might have students mine political data to find evidence of
corruption. Yet another project, perhaps controversially, would in-
volve analyzing social media data provided by services including
Twitter or Facebook, to identify the cases of private data being
left publicly available unintentionally. Tying actual class projects
to such topics can powerfully convey computing’s role in society to
the introductory learner.

Alas, despite its ubiquity, distributed computing remains hard.
Even the seasoned software developer finds working with network
protocols and parsing binary data streams conceptually complex,
particularly in the presence of overwhelming technical issues that
range from handling partial failure to dealing with the distributed
components evolving independently from each other. Not surpris-
ingly, a common CS curricular design strategy is to leave the chal-
lenges of teaching distributed computing for later courses, when
students will have accumulated sufficient technical expertise and
tolerance for engineering non-trivial system designs.

The net effect of these curricular design choices is that the con-
tent of introductory courses remains isolated from issues pertain-

ing to Web-based real-time data. Programming projects are partic-
ularly vulnerable to this omission. When working on programming
projects, introductory students find themselves disconnected from
familiar data from social media, news outlets, and local business.
Instead, they find themselves tackling abstract, toy problems with
limited context in their lives. Divorcing the content of programming
projects from the students experiences as computer users has a de-
bilitating effect on motivation and engagement [2]. In fact, compe-
tent students are known to leave the major, having been discour-
aged by the lack of relevance for what they learn [1]. This problem
is particularly acute for female students, for whom real-world ap-
plication has been identified as the primary motivation for studying
the discipline [6]. Our vision is that introductory courses can over-
come the technical barriers inherent in working with real-time web
data, enabling us to introduce novel, relevant projects to students.

2. Prior Work
Insulating beginner programmers from complicated systems while
still providing the ability to manipulate interesting data is not a
novel concept. For example, most novice-targeted programming
environments feature convenient methods for manipulating images
and sounds. Indeed, Racket [7] treats images as a primitive data
type, avoiding the complex, low-level programming that is typi-
cally required. While images and sounds have an obvious appeal,
they lack the direct real-world connection afforded by real-time
data. However, there has been little work to create similar student-
oriented interfaces for real-time data sources.

Despite this, working with real-time data has been shown to
have an impact on student learning. A project at Stanford in a Geo-
logical Sciences course had students working with real-time data on
earthquakes [5]. Although students did not use a programmatic ap-
proach, scientific computational tools were used to analyze the data
and reach conclusions. The instructor reported that students became
significantly more engaged as they worked with data that had rel-
evance to them. For instance, many students became excited when
they discovered that there were earthquakes happening in their re-
gion all the time. The final assignment had students chose a city
that they wanted eventually to live in and determine the geological
risks of the area. The instructor reported that, even after the course
had ended, students applied similar analysis to other geographical
regions relevant to their lives. This assignment contextualized the
learning experience for the student, and created ”a personal con-
nection and positive affect that motivates their future learning” [5].
Corresponding projects, perhaps even using the same data source,
are ripe for a programming class.

Similar projects have been used in statistics courses [3] and data
mining courses [10]. Although other domains seem ready and will-
ing to bring real-world data into the classroom, the research liter-
ature on the topic is scarce. One recent exception is a project con-
ducted by Dr. Marc Waldman that introduces realistic open data
into upper-level database courses [11]. Although the cited benefits
are similar, Waldman’s work takes advantage of the complicated
nature of real-world data to challenge experienced learners. While
we wish to avoid scaring novices, it is also desirable to appro-
priately challenge more advanced users, enabling them to develop
higher-level skills.

3. Our Approach
We have created a software architectural framework (named ”Real-
TimeWeb”) that provides introductory programming students with
an easy way to manipulate distributed real-time data. Our approach
offers technical scaffolding for the students to gradually ease into
(or completely circumvent if appropriate) some of the most vexing
complexities of distributed computing. At the heart of our project

Business Service Connects to the Yelp API to gather information
about businesses.
• Search Businesses

Consumes a string representing a location.
Produces a list of businesses near that location.

• Get Business Data
Consumes a Business.
Produces a new Business with more detailed informa-
tion.

Weather Service Connects to the National Weather service to get
forecasts.
• Get Weather

Consumes a pair of numbers indicating a geo-
coordinate.
Produces data about the current weather at that location.

• Get Forecasts
Consumes a pair of numbers indicating a geo-
coordinate.
Produces a list of forecasts for that location.

Reddit Service Connects to the link-sharing site Reddit to get
user-submitted content.
• Get Posts

Consumes Consumes an optional string indicating the
subreddit to filter by.
Produces Produces a list of the top Posts in that subred-
dit.

• Get Comments
Consumes a Post.
Produces a heirarchical list of comments associated
with that post

Figure 1. Sample Client Libaries

are carefully engineered client libraries through which students can
access the data provided by real-time web services. These libraries
are readily available through an online curated gallery, designed
to be quickly adapted to instructors specific academic needs. This
gallery also provides a tool for rapidly prototyping new libraries
based on our framework.

3.1 Client Libraries
To connect students to real-time data sources, we have designed
client libraries with features intended for novice programmers.
Each library offers a selection of method calls to request, parse, and
return real-time data. Presently, we have created libraries to provide
business reviews, weather forecasts, and content from the link-
sharing site Reddit. Figure 1 summarizes the functionality available
in the existing libraries. We have plans to create additional libraries
for stock trading information, publicly released political data, and
sports statistics. In theory, any publicly available real-time data
source can be targeted by our framework.

3.1.1 Scaffolding
The instructor can determine how data is returned, so as to to
provide varying levels of scaffolding. Choices include raw strings
of data, semi-structured hashes and lists, or object-oriented classes.
In this way, how much work students must perform to manipulate
the data can be carefully chosen. This means that the libraries can
be used in a wide variety of educational scenarios.

Real-time

Data Source

Client Library

Data Cache

Client

Library

Student

Code

Send:
get_weather(“Newark, DE”)

Receive:
List of Weather objects

Send:
http://forecast.gov?city=newark&st=de

Receive:
JSON-formatted string

Figure 2. Client Library Architecture

3.1.2 Language
As the Computer Science Curriculum 2013 Ironman Draft [9]
points out, there are many different programming languages used
in introductory courses. To account for this, we implemented each
library in a number of common beginner languages, including
Python, Java, and Racket. We have also made an effort to provide
compatibility on key platforms, including Android.

3.1.3 Threading
To address the needs arising in an assortment of situations, the li-
braries offer the flexibility of returning the results of API calls ei-
ther synchronously or asynchronously. Concurrent programming,
although an important skill for students to develop, can be over-
whelming for beginners. Even as work to integrate multiprogram-
ming into lower-level courses moves forward, scaffolding is still
required if we want intro students to develop applications with par-
allel processing capabilities. Using the asynchronous return mode,
the hard problems of threading can be avoided.

3.1.4 Internalized Data Cache
Perhaps the single most useful feature of the libraries is the inter-
nalized data cache. The cache can be used to avoid making requests
directly to the actual data source, instead accessing a local, static
data store. Figure 2 demonstrates the flow of data when using a
client library. The cache option offers a number of advantages.

Idempotency By its nature, real-time data is subject to rapid tem-
poral changes. Weather forecasts change on a daily basis, for
example, and services like Reddit or Twitter change by the
minute. Developing a program that uses such volatile data can

be tricky, since it can change between runs of the program. To
accommodate introductory students, the libraries make it possi-
ble to used cached local data, so consistency of input from run
to run is guaranteed.

Consistency The content and structure of the web is highly dy-
namic, as that of the web services composing it. Because ser-
vice APIs commonly evolve at a dizzying pace, the libraries
that depend on them must be updated accordingly. Even during
a single semester, changes in the data source could be intro-
duced that would result in an out-of-date library. However, this
problem can be bypassed by keeping to the internal data cache
until an updating fix is released, avoiding any serious delays in
development.

Connectivity Although most campuses have gigabit internet con-
nections, this is not universal. Additionally, many students live
in off-campus settings with varying internet capabilities. Re-
quiring students to develop an application in these settings can
be a tall order. However, the the cache allows client libraries to
be used offline, if necessary.

Efficiency Even assuming a fast and stable connection, the perfor-
mance of many web services is limited by the number of con-
nections that the server can handle. Student developers can be
polite consumers by developing with client-side data, greatly
reducing the number of calls to the online service. This is es-
pecially important since many APIs throttle the number of re-
quests (e.g. 100 API calls per day).

Tests Instructors can use the cached data for testing, ensuring uni-
form coverage by all students. There is no need to worry about
students missing out on edge cases, since they can be provided
with the important cases. Since the cache is stored in a conve-
nient JSON-based data format, it can easily be modified by in-
structors to return specific results. The ability to ensure consis-
tent tests is particularly useful for automated grading systems,
such as Web-CAT [4].

3.1.5 Open-source
The libraries are meant to be good examples of API design. As
students gain mastery, they can be encouraged to read the source
code to learn how network communication and data parsing is im-
plemented. They can then modify, extend, and even re-implement
the API as they see fit. If students choose to create their own API
based on our model, they can submit it to our gallery and gain wider
recognition for their work.

3.1.6 Examples
Figure 4 demonstrates using the Java version of the Reddit library.
This sample program monitors new posts for a given keyword, and
then updates when a title of interest appears. Note that if line 25
had been omitted, the library would have instead returned results
from its internal cache. Figure 5 shows an example of using the
Racket version of the Weather library. This program will check the
weather forecast for a user-specified location, and then graphically
render the expected temperatures as colored circles.

3.2 Curated Gallery
The completed libraries are showcased at http://research.cs.
vt.edu/vtspaces/realtimeweb/. Besides the various language
bindings available for a service (e.g. Python, Racket, Java), there
are a number of other useful pieces of information:

• API documentation and student-oriented user guides for each
language,

• alternative datasets for the internalized data cache (e.g., instead
of business reviews from around Blacksburg, VA, there might
be another dataset for Indianapolis, IN)

• Example assignments that use the library.

3.3 Prototyping Tool
An important goal for our project is to provide an online tool for
rapidly prototyping new libraries. Most of the code used in our li-
braries follows the same pattern for any given language. First, re-
quests are made to a web service and raw data is returned (typically
as XML or JSON). Next, the data is parsed into some intermedi-
ary, semi-structured form using dictionary and list types that are
native to the language. Finally, the data is encoded into a class or
struct, depending on the disposition of the language. For example,
beginner students using Racket might deal with structs, instead of
classes. This is not true in object-oriented languages such as Python
and Java. Because the data flow is consistent regardless of pro-
gramming language or data source, we can leverage this similar-
ity to fill out a template for the target languages based on a single,
abstract meta-description (a ”Client Library Specification”). Our
current version of the prototyping tool enables a user to create and
edit a Specification, from which it can generate corresponding, pro-
totypical client libraries for Racket, Python, and Java. Ultimately,
this tool will be a component of the gallery to allow instructors to
quickly create new services for their students.

3.4 Using RealTimeWeb
The labelled arrows in figure 3 demonstrate how the complete
RealTimeWeb framework is used by instructors and students.

1. A Developer (potentially an Instructor) (1) designs a new
Client Library Specification based on a Real-Time Data Source.

2. The RealTimeWeb Generator website uses this Specification to
(2) generate Client Libraries for the desired target languages
(e.g. Python, Racket, Java, etc.). Developers can fine-tune these
libraries as needed for the specific service, perhaps adding post-
processing on API results or more complicated authentication.

3. The Developer can use one of the Client Libraries to collect and
(3) cache data from the Data Source.

4. The finalized libraries, the default cache, and any alternative
caches are (4) submitted to the gallery.

5. An Instructor can (5) assign a specific service, library, and data
cache to Students.

6. Students (6) use the library and cache for a class project involv-
ing the data source.

7. The Client Library handles all (7a) access to the Data Source,
insulating Students from complicated network protocols.

8. Alternatively, students can direct the Client Library to (7b)
access the Local Cache instead of the online Data Source, in
order to work offline.

Students

(1) Designs

Developer

Instructor

Client Library

Specification

Real-time

Data Source

RealTimeWeb

Gallery

Client

Libraries

Client Library

Data Cache

(2) Generates (3) Caches

(4) Submits

(7b) Alt Access

(5) Assigns

(6) Uses

Figure 3. RealTimeWeb Architecture

Figure 4. A simple program demonstrating the Java Reddit library

1 package R e d d i t S e r v i c e E x a m p l e ;
2
3 import j a v a . u t i l . L i s t ;
4 import j a v a . u t i l . HashSet ;
5 import j a v a . u t i l . Scanne r ;
6 import r e a l t i m e w e b . r e d d i t s e r v i c e . main . R e d d i t S e r v i c e ;
7 import r e a l t i m e w e b . r e d d i t s e r v i c e . domain . P o s t ;
8 import r e a l t i m e w e b . r e d d i t s e r v i c e . e x c e p t i o n s . R e d d i t E x c e p t i o n ;
9

10 p u b l i c c l a s s RedditDemo
11 {
12
13 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) throws R e d d i t E x c e p t i o n
14 {
15 Scanne r sc = new Scanne r (System . i n) ;
16 System . o u t . p r i n t l n (” E n t e r a keyword ”) ; / / read u s e r i n p u t
17 S t r i n g keyword = sc . n e x t L i n e () . toLowerCase () ;
18
19 t rackKeyword (keyword) ;
20 }
21
22 p u b l i c s t a t i c vo id t r ackKeyword (S t r i n g keyword) throws R e d d i t E x c e p t i o n
23 {
24 R e d d i t S e r v i c e r s = R e d d i t S e r v i c e . g e t I n s t a n c e () ; / / Cr ea t e main o b j e c t
25 r s . c o n n e c t () ; / / Use t h e a c t u a l R e d d i t s e r v i c e , n o t t h e l o c a l cache
26
27 HashSet<Pos t> s e e n P o s t s = new HashSet<Pos t > () ;
28 whi le (t rue) {
29 L i s t<Pos t> newPos t s = r s . g e t P o s t s () ; / / Get a l i s t o f t h e t o p p o s t s
30 f o r (P o s t p : p o s t s) {
31 i f (! s e e n P o s t s . c o n t a i n s (p . g e t I d ())) { / / Check i f i t ’ s new
32 S t r i n g p o s t T i t l e = p . g e t T i t l e () . toLowerCase () ;
33 i f (p o s t T i t l e . c o n t a i n s (keyword)) { / / Check i f i t has our keyword
34 System . o u t . p r i n t l n (”New p o s t w i th keyword : ” + p) ;
35 s e e n P o s t s . add (p . g e t I d ()) / / Add i t t o seen p o s t s
36 }
37 }
38 }
39 Thread . s l e e p (5 0 0 0) / / w a i t f o r 5 s e c o n d s
40 } / / w h i l e
41 }
42 }

4. Courses Project Transformation
When integrated into a class project, our tools offer several fea-
tures that positively impact student engagement. First, by offering
libraries for a multitude of services, students have greater auton-
omy to control the general direction of their project. Second, this
means that students can choose a data source that they find relevant
to their interests. Third, the simple design of the libraries fosters a
sense of self-efficacy and competence within the student. These as-
pects are all recognized as increasing intrinsic motivation and en-
gagement [8].

However, using real-world data does more than just engage
students and increase their intrinsic motivation. Instructors can use
the libraries to introduce real-world problems. Example project
ideas include:

• Reddit Service: Social link-sharing website Reddit aggregates
interesting content from around the web, including news and
other real-time data sources. Students could be tasked with

processing data from the site and finding interesting patterns in
comments and posts. Even with only a rudimentary knowledge
of string parsing, there are many interesting operations that can
be performed, such as analyzing average comment length or
finding a keyword.

• Weather Service: Planning a long-distance trip can be tricky,
and preparing for weather is important. Students could inves-
tigate how to avoid bad weather between cities using different
search algorithms to find best possible paths.

• Business Service: Business reviews can be a useful way to find
out how good a restaurant is. Students could combine price
data with user-reported ratings in order to make a restaurant
suggestion application.

As a specific example of the potential educational benefits that
RealTimeWeb can afford, consider two different sketches for a
programming project that can be assigned to reinforce the topic
of circular linked lists, a fixture of a typical data structures course.

Figure 5. A simple program demonstrating the Racket Weather library

1 ; ” wea ther . r k t ” i s t h e R ac k e t Weather l i b r a r y
2 (r e q u i r e ” w e a t h e r . r k t ”)
3 (r e q u i r e 2 h tdp / image)
4
5 ; 16 i s a n i c e s i z e
6 (d e f i n e SIZE 16)
7
8 ; f o rec as t−>c o l o r : f o r e c a s t −> c o l o r
9 ; C r e a t e s a c o l o r based on t h e t e m p e r a t u r e o f t h e f o r e c a s t .

10 ; The h i g h e r t h e t e m p e r a t u r e , t h e r e d d e r t h e c o l o r .
11 (d e f i n e (f o r e c a s t−>c o l o r a− f o r e c a s t)
12 (make−color (f o r e c a s t− t e m p e r a t u r e a− f o r e c a s t) 0 0))
13
14 ; f o rec as t−>c i r c l e : f o r e c a s t −> image
15 ; C r e a t e s a s o l i d c i r c l e w i t h a c o l o r based on t h e t e m p e r a t u r e .
16 (d e f i n e (f o r e c a s t−>c i r c l e a− f o r e c a s t)
17 (c i r c l e SIZE ’ s o l i d (f o r e c a s t−>c o l o r a− f o r e c a s t)))
18
19 ; f o r e c a s t s−>c i r c l e s : no n−emp ty− l i s t−o f− f o r eca s t s −> image
20 ; C r e a t e s a s e r i e s o f c i r c l e s based on a l i s t o f f o r e c a s t s .
21 (d e f i n e (f o r e c a s t s−>c i r c l e s n e l o− f o r e c a s t s)
22 (cond [(empty ? (r e s t n e l o− f o r e c a s t s))
23 (f o r e c a s t−>c i r c l e (f i r s t n e l o− f o r e c a s t s))]
24 [(cons ? (r e s t n e l o− f o r e c a s t s))
25 (b e s i d e (f o r e c a s t−>c i r c l e (f i r s t n e l o− f o r e c a s t s))
26 (f o r e c a s t s−>c i r c l e s (r e s t n e l o− f o r e c a s t s)))]))
27
28 ; report−>c i r c l e s : r e p o r t −> image
29 ; C r e a t e s a s e r i e s o f c i r c l e s based on a r e p o r t t h a t i n d i c a t e
30 ; t h e t e m p e r a t u r e change over a s e r i e s o f t i m e p e r i o d s .
31 (d e f i n e (repor t−>c i r c l e s a− r e p o r t)
32 (f o r e c a s t s−>c i r c l e s (r e p o r t− f o r e c a s t s a− r e p o r t)))
33
34 ; Get u s e r i n p u t
35 (d e f i n e LATITUDE (read))
36 (d e f i n e LONGITUDE (read))
37
38 ; Render t h e c i r c l e s
39 (repor t−>c i r c l e s (ge t−weathe r LATITUDE LONGITUDE))

The first version, uses abstract data, while the second one uses the
data provided by the Business Service library that comes as part of
the current RealTimeWeb catalog.
Original Version:

1. Create a circular list data structure capable of holding heteroge-
neous data.

2. Create a Data class that contains an integer id and a String
description.

3. Place Data objects whose id fields represent consecutive integer
values into each node of the list.

4. Remove all the nodes containing Data objects, whose id fields
are even numbers.

RealTimeWeb Version:

1. Create a circular list data structure capable of holding heteroge-
neous data.

2. Download a list of nearby restaurants and place them into the
nodes of the list, sorted by their price levels.

3. Remove all the restaurants that do not offer vegetarian options.

Although both versions reinforce the same topic of circular linked
lists and require a comparable amount of student effort, the Real-
TimeWeb version has students manipulate data they are likely to
encounter in their day-to-day experiences, thus potentially increas-
ing motivation and engagement.

It’s important to recognize that integrating these services needs
to be more than skin deep. Students should be given a situated
perspective on how this data interacts with the real world. Rather
than just downloading an abstract list of data, assignments should
lead to practical, interesting tools and results that the students can
be proud of.

5. Intervention
To gather formative evaluations on the tools, we piloted our Busi-
ness Service client library in a CS2-style course offered at Virginia
Tech (CS 2114) in Spring 2013. This course covers topics typical
to a second semester Computer Science course, including Object-
Oriented concepts and the Java programming language. All stu-
dents in the class are Computer Science majors and minors in their
first or second year, with mostly limited prior programming expe-
rience. Every week, students use paired programming to complete

Statement St
ro

ng
ly

D
is

ag
re

e

D
is

ag
re

e

So
m

ew
ha

tD
is

ag
re

e

So
m

ew
ha

tA
gr

ee

A
gr

ee

St
ro

ng
ly

A
gr

ee

To
ta

l

”I found the content
of the... lab to be ap-
plicable to my day-to-
day computing experi-
ences.”

0 0 1 9 5 2 17

”The classes in the API
were clear to use based
on their names.”

0 0 1 4 7 5 17

”The methods of the
API were clear to use
based on their names.”

0 0 0 5 12 0 17

”Overall, the API was
easy to use.” 0 0 0 2 14 0 16

Table 1. Results of the CS-2114 survey on the Business Service
assignment

a lab assignment. There are also three large projects meant to be
completed over the course of the semester.

In one lab session, students were assigned a multi-part problem
that required the use of the Business Service library. To personalize
their experience with the library, the internal data cache was filled
with data from the Blacksburg area. The description of the lab
began with an overview of the problems and advantages inherent in
using real-time data, and then described how the Business Service
library could be used. In the first task, students used the library
to create a list of highly rated businesses in the area. In the second,
they expanded that list with more detailed information. The primary
intent of this lab was to familiarize students with the client library.

Students had a second opportunity to work with the library in
the third project of the course, where they built a more complicated
”Restaurant Guide” Android application. Students again search for
a list of restaurants in a given region. This time, however, they are
required to place the results in a custom-created Circular List data
structure.

A voluntary survey was administered to the class after students
had completed the project, and 17 responses were gathered. Over-
all, the results, while preliminary, were positive. All but one student
indicated that they found the API applicable to day-to-day comput-
ing experiences, and all students thought that the API was easy-to-
use. Qualitative feedback from the students highlighted clear, easy-
to-figure-out methods and that they provided information that was
easy to work with. Full numerical results from the survey are re-
ported in Table 1.

6. Future Work
Currently, there are only three services available through our client
libraries, each in three languages. Ultimately, we plan to have a
diverse gallery that can cater to a wide range of student interests.
We are particularly interested in soliciting feedback from the edu-
cation community on other services that would be of interest and
languages that should be supported.

Besides the individual client libraries, there are planned im-
provements to the prototyping tool. Our intention is that instruc-
tors should be able to customize the libraries both for their desired
data source and location. Currently, the tool only creates rudimen-

tary implementations based on a given Client Library Specification.
More sophisticated code generation for post-processing API results
could be added by noting common transformations. For instance,
cleaning up whitespace in strings or mapping a function across an
array could be supported. Presently there is only one form of API
authentication supported and only JSON data can be parsed. Sup-
porting more complicated forms of data parsing, such as HTML,
would enable a much broader set of client libraries. Finally, auto-
mated support for filling the data cache from the prototyping tool
directly would greatly simplify the development process.

7. Conclusion
Learning how to handle real-time web data is an important skill
for modern CS students to develop. This learning experience also
makes introductory programming projects more relevant to the stu-
dents day-to-day computing experiences, thereby increasing en-
gagement and motivation. In order to reduce the technical barriers
inherent in interacting with distributed systems, we have created
publicly available client libraries that make it possible to connect
to popular web services in an introductory student friendly manner,
enabling a gradual introduction to the complexities of distributed
computing. Results from an early pilot indicate that our libraries are
easy to use by introductory students. The RealTimeWeb framework
provide a promising way to better engage students while preparing
them for the realities of the modern IT workplace .

References
[1] L. Carter. Why students with an apparent aptitude for computer

science don’t choose to major in computer science. In Proceed-
ings of the 37th SIGCSE technical symposium on Computer science
education, SIGCSE ’06, pages 27–31, New York, NY, USA, 2006.
ACM. ISBN 1-59593-259-3. doi: 10.1145/1121341.1121352. URL
http://doi.acm.org/10.1145/1121341.1121352.

[2] D. I. Cordova and M. R. Lepper. Intrinsic motivation and the process
of learning: Beneficial effects of contextualization, personalization,
and choice. Journal of educational psychology, 88:715–730, 1996.

[3] A. B. Downey. Think Stats. O’Reilly Media, July 2011. ISBN
1449307116. URL http://greenteapress.com/thinkstats/
thinkstats.pdf.

[4] S. Edwards. Using test-driven development in the classroom: Provid-
ing students with automatic, concrete feedback on performance. In In
Proceedings of the International Conference on Education and Infor-
mation Systems: Technologies and Applications, EISTA, 2003.

[5] A. E. Egger. Engaging students in earthquakes via real-time data
and decisions. Science, 336(6089):1654–1655, 2012. doi: 10.1126/
science.1214293. URL http://www.sciencemag.org/content/
336/6089/1654.short.

[6] A. Fisher, J. Margolis, and F. Miller. Undergraduate women in com-
puter science: experience, motivation and culture. In Proceedings of
the twenty-eighth SIGCSE technical symposium on Computer science
education, SIGCSE ’97, pages 106–110, New York, NY, USA, 1997.
ACM. ISBN 0-89791-889-4. doi: 10.1145/268084.268127. URL
http://doi.acm.org/10.1145/268084.268127.

[7] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2013-
1, PLT Design Inc., 2013. http://racket-lang.org/tr1/.

[8] R. M. Ryan and E. L. Deci. Self-determination theory and the facilita-
tion of intrinsic motivation, social development, and well-being. The
American psychologist, 55(1):68–78, Jan. 2000. ISSN 0003-066X.
URL http://view.ncbi.nlm.nih.gov/pubmed/11392867.

[9] M. Sahami, S. Roach, E. Cuadros-Vargas, and D. Reed. Computer
science curriculum 2013: reviewing the strawman report from the
acm/ieee-cs task force. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, SIGCSE ’12, pages 3–4,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1098-7. doi:
10.1145/2157136.2157140. URL http://doi.acm.org/10.1145/
2157136.2157140.

[10] L. Torgo. Data Mining with R, learning with case studies. Chapman
and Hall/CRC, 2010. URL http://www.liaad.up.pt/~ltorgo/
DataMiningWithR.

[11] M. Waldman. Keeping it real: utilizing nyc open data in an intro-
duction to database systems course. J. Comput. Sci. Coll., 28(6):
156–161, June 2013. ISSN 1937-4771. URL http://dl.acm.org/
citation.cfm?id=2460156.2460186.

