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Abstract
Mathematical induction is a difficult subject for beginning students
of computer science to fully grasp. In this short paper, we propose
using functional programming and proof assistants as an aide in
teaching mathematical induction in a traditional discrete mathemat-
ics course. To demonstrate this approach, we created a proof-of-
concept web-based tutorial on induction. In this tutorial, students
write small functional programs and prove simple properties about
them using inductive reasoning. The functional programming lan-
guage is deliberately designed to be minimalistic so that it can be
picked up quickly, especially if the student is already familiar with
a functional programming language, and not be a distraction to the
ultimate goal of learning induction. Furthermore, the tutorial fea-
tures an online IDE for entering programs and proofs to minimize
the barrier to entry for students and instructors.

1. Introduction
Mathematical induction and formal proof are notoriously difficult
subjects for undergraduates in computer science to fully grasp.
Many students walk out of their discrete mathematics, formal meth-
ods, and algorithms courses without really understanding what con-
stitutes a proof by induction, let alone when it is necessary. Worst
yet, even if students come away with a sense of how to carry out
inductive proofs, they don’t understand how their knowledge of for-
mal proof and inductive reasoning can inform their day-to-day pro-
gramming tasks.

We believe that the programming languages community pos-
sesses two unique contributions to solve this problem:

Functional Programming Inductive datatypes, recursive func-
tions, and (structural) induction share a strong connection with
each other. Exploiting this connection can solidify understand-
ing among all three topics.

Proof Assistants Mechanizing proofs unveils the hidden structure
and nuances of propositions much like how programming does
the same for algorithms. Proof assistants can help students
understand the proper structure of formal proofs, in particular
inductive proofs.
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Several universities have integrated functional programming
early in their curriculum, some as early as the introductory pro-
gramming sequence. With the addition of functional programming
to the 2013 Computer Science Curricula revision [7], many more
universities will be integrating functional programming into their
programs. While functional programming is an inherently valu-
able subject for the computer science student on its own, we must
explore how knowledge of functional programming can enhance
students’ learning throughout their computer science education.
Induction is certainly one such topic that synergizes well with func-
tional programming.

The benefits of proof assistants such as Coq [12], Agda [6],
Twelf [9], and Isabelle [13] are well known to the programming
languages community. Proof assistants help us verify the meta-
theoretic claims that we make and frequently reveal subtle, game-
breaking flaws in our logic. However, we are also well-aware of the
shortcomings of proof assistants: they are complicated to use and
burdensome for anything but the smallest of developments.

This has not stopped educators from integrating proof assistants
into the classroom, for example programming language founda-
tions [10] and formal logic [5]. However, these efforts have been
“heavyweight” in that sense that they have introduced the proof as-
sistant in its full glory to the student. As a result, learning how to
use the proof assistant itself becomes as much of the course as the
rest of the content. Because induction is only one part of a tradi-
tional discrete mathematics course, it is not prudent to introduce a
full-fledged proof assistant just to teach induction more efficiently.

1.1 Contributions
To teach the basics of formal proof by induction, we only need a
small subset of the proof assistant’s functionality. Therefore, in this
short paper we propose a new learning module to teach induction.
With this module, we write simple functional programs and then
prove properties about those programs with the aide of a proof
assistant. We believe this module has a number of benefits:

1. The inductive datatypes of a functional programming language
and inductive reasoning are a natural fit for each other. Coupling
the two shows students why induction is important not just
as a theoretical device, but as a reasoning tool for practical
programming.

2. Using a proof assistant makes the process of proof concrete
and explicit to the student similarly to how programming makes
concrete the process of algorithmic thinking.

3. Proof assistants themselves have an addictive, game-like quality
to them that helps the student focus on examples and exercises.

4. Indirectly, using a proof assistant raises the important question
of informal versus formal proof. Except in this context, students



have a very concrete notion of formal proof, thanks to the proof
assistant, to base this conversation.

Traditional proof assistants raise the barrier to entry substan-
tially, so to lower this barrier and demonstrate our module, we have
implemented MINIFN, a prototype programming system consisting
of a small, core functional language and proof assistant. The sys-
tem contains just enough features to explain inductive proofs in the
context of functional programs. With this minimalistic approach,
we hope to make adoption by instructors easier. To further ease
adoption, we have implemented MINIFN as a web service that re-
quires no installation on the part of the student. Finally, we have
implemented a proof-of-concept online tutorial on induction that
uses the MINIFN system as an embedded IDE.

Section 2 outlines our proposed learning module in more detail.
Section 3 gives a brief over the MINIFN system. Section 4 describes
our prototype online tutorial, and we discuss our future directions
in Section 5.

2. The Module
In this section, we describe our induction module in more detail.
In particular, we define our target audience, goals, and then give an
outline of the module content itself.

2.1 Audience
Our approach to teaching induction targets the beginning computer
science undergraduate learning induction in the context of a dis-
crete mathematics course. In light of the 2013 curriculum revi-
sion [7], we ideally would like the student to already be exposed
to functional programming. However, the functional programming
component of this module is small enough that a student only ex-
posed to a traditional introductory programming course can pick it
up without much effort.

Alternatively, this module can be used by students who are
just learning functional programming. Visiting proof by induction
in this context reinforces the strong mathematical foundation of
functional programming as well as showcases the ease at which
we can reason about programs that possess this sort of foundation.

2.2 Goals
In combining functional programming and proof assistants, it is
easy to digress into programming language theory minutiae that,
while interesting, are ultimately irrelevant to the goal of teaching
induction. To prevent this from happening, we have clearly defined
goals with this approach to ensure that we stay on track in spite of
these new technologies. Students should:

1. Learn the mechanics (form and structure) of a proof by struc-
tural induction,

2. Learn when induction is a necessary proof technique and useful
reasoning tool,

3. Learn the distinction between structural induction and mathe-
matical induction (of which the latter is a special case of the
former),

4. Learn/reinforce some of the fundamentals of functional pro-
gramming: inductive datatypes and recursion,

5. Understand the connection between functional program design
with inductive datatypes and recursive functions and inductive
reasoning,

6. Understand the spectrum that exists between formal, machine-
checked proof and informal reasoning, and

7. Understand how a strong sense of the formalities of induc-
tive proof influences day-to-day informal reasoning about pro-
grams.

In particular, there are a number of things we do not touch
upon. Our module, while using functional programming, is not a
replacement for a complete treatment of functional programming.
In particular, in the course of the module, we have no need of first-
class and higher-order functions. While this is a good opportunity
to discuss the deep connection between proof and programs (i.e.,
the Howard-Curry Isomorphism), we avoid this discussion entirely
in the interest of focusing our discussion. Finally, we also do not
leverage our proof assistant to teach additional aspects of formal
logic other than what is necessary to establish basic proofs of
induction.

2.3 Module Outline
With these goals in mind, our induction module proceeds as fol-
lows.

Functional Programming We first introduce/review inductive
datatypes, pattern matching, and structurally recursive functions
over those datatypes. In particular, we use simple datatypes —
booleans and natural numbers — as well as lists over these
datatypes. At this stage, we expect students to have a good idea
of the mechanics of recursive functions. That is, they understand
that a chain of recursive function calls “bottom out” at a defined
base case. This intuition is important because we use it to justify
why the “inductive assumption” of an inductive proof is also well-
founded.

Simple Proofs We then discuss proving simple propositions
about programs using these datatypes. To prove these proper-
ties, students use simplification and case analysis over inductive
datatype constructors. At this stage, we use the MINIFN proof as-
sistant, but we stress the student first produce proofs on paper and
then check their proofs with MINIFN. The formal MINIFN proof
quickly becomes the template that students use to write their proofs.

For example, one exercise we present is double negation elimi-
nation for booleans, that is ¬(¬b) = b for any boolean b. The paper
proof we demand of the student is relatively verbose:

• Consider a particular b. This b must be either true or false.
• If b = true then we have ¬(¬true) = true. If b = false then

we have ¬(¬false) = false which completes the proof.

However, it mimics what the MINIFN proof assistant requires of
them and thus enforces this connection between the logic they need
to go through when proving these propositions and what the proof
assistant provides.

Induction We show that case analysis quickly becomes insuffi-
cient when reasoning about inductive datatypes, and the “inductive
assumption” is what we need to to make our proofs go through.
We describe induction as case analysis but with the addition of
this assumption. We then justify the correctness of this assump-
tion by comparison to the structurally recursive function calls we
have been writing up to this point. We then go through a variety of
examples using induction over natural numbers, motivating the dis-
tinction between traditional mathematical induction and structural
induction, and lists. Two such examples are proving that addition
over the natural numbers is monotonic and list reversal preserves
list length.

Formal vs. Informal Proof In order to help students lift their ex-
perience of writing inductive proofs in MINIFN to other situations,
we close by discussing the difference between formal and informal



Decls : : = type D = C1 T11 . . . T1n | . . . | Ck Tj1 . . . Tjm

| let f(x1 : T1) . . . (xn : Tn) : T = e
T : : = T | T1 → T2

e : : = fun (x1 : T1) . . . (xn : Tn) : T = e | e1 e2
| match e with p1 → e1 | . . . | pn → en

prfcmd : : = introduce | simplify | destruct e
| rewritef h | rewriteb h | induction e

Figure 1. The MINIFN programming language.

proof. We offer the paper proofs they have written so far as a way
to structure their formal proofs for future classes. We also recom-
mend that when reasoning about inductive structures in their own
programs that they structure their informal reasoning in the style of
a formal proof (but, of course, not go into that level of detail).

3. The Minifn System
We want to avoid overwhelming students with the complexities
of a full-fledged programming language and proof assistant or
otherwise distract them away from the goals we have outlined
thus far. To do this, we utilize a prototype programming system
called MINIFN which features a core statically-typed functional
programming language as well as a basic scripting language for
writing proofs about MINIFN programs. MINIFN itself lowers to
Coq [12], so the system is backed by a full-fledged proof assistant.

With MINIFN, we want to give programmers just enough power
so that they can write simple, yet interesting recursive datatypes
and functions over those datatypes. Figure 1 gives the syntax of
MINIFN. To accomplish this, we only need datatype declarations,
(structurally) recursive functions, and pattern matching. Other fea-
tures such as let-binding, type inference, and polymorphism are not
necessary and thus not included. Our hope is that this core lan-
guage is simple enough that it is immediately familiar to anyone
that knows a pre-existing functional language or easily picked up
by anyone that has taken an introductory programming course.

MINIFN’s proof language employs a subset of the Coq vernac-
ular as shown in Figure 1. This subset is just enough to be able to
prove the simple inductive properties that we would like. For ex-
ample, the monotonicity of addition property is proven as follows:

Lemma plusMonotonic : forall (n:nat) (m:nat),
gte (plus n m) n = true

Proof
introduce
induction n

simplify
rewrtitef gteO
reflexivity

simplify
rewritef IHn
reflexivity

Qed

The plusMonotonic property claims that:

∀n,m : n+m ≥ n

The first two lines of the proof state this property in MINIFN
language. The remaining lines are a proof script outlining the steps
of the proof. If we were to write the proof on paper, it might look
like this:

• To prove this fact, we choose particular natural numbers (nats)
n and m and proceed by induction on n. A natural number is

either 0 or 1 + n′ for some (smaller) natural number n′, so it is
sufficient to prove the claim for each case.

• When n = 0 then 0 + m ≥ 0 is true because 0 + m = 0 for
any m.

• When n = 1 + n′ then 1 + n′ + m ≥ 1 + n′. Our induction
hypothesis states that n′ + m ≥ n′. After simplification, it is
sufficient to prove that n′ +m ≥ n′ which is exactly what our
induction hypothesis says.

Proof scripts are composed of a series of commands which are
drawn from a subset of the Coq tactics language. What is nice is that
the proof script above follows the paper proof exactly. If you are
already familiar with Coq, then you can likely see how the formal
and paper proofs coincide. For those less familiar, it is worthwhile
to illustrate this correspondence:

• In the first block, the introduce commands moves the vari-
ables n and m under the forall quantifier and makes them as-
sumptions analogous to our “choosing” particular natural num-
bers n and m. The induction n command performs induction
on n breaking up the proof into two parts: when n is zero and
when n is the successor of some n’.

• In the second block, we prove the case where n is zero.
simplify simplifies our goal by performing as much com-
putation as possible. The fact that plus 0 m is m for any m is
recorded in an auxiliary lemma gteO that we use to rewrite
the goal with the rewritef command (where the -f implies a
forward rewrite). This leaves us with a syntactic identity left to
prove (ie., true = true), so we use the reflexivity com-
mand to discharge this goal.

• In the third block, we prove the case where n is the successor
of some n’. The case proceeds similarly to the previous case
except that we use the inductive hypothesis (named IHn) to
rewrite the goal.

What is nice about this subset is that it closely mimics the pa-
per proof we want students to write. Thus, students are not “learn-
ing the proof assistant” but instead using MINIFN to structure and
check their formal reasoning. In particular, MINIFN allows the stu-
dent to check that the induction hypothesis they think they possess
is correct, a common mistake that beginning students make.

4. Online Tutorial
To put our module into practice, we have developed a proof-of-
concept online induction tutorial. You can view the current iteration
of the tutorial at this address:

https://fling.seas.upenn.edu/~posera/induction

The tutorial is intended for beginning computer science students
who are being exposed to induction and formal reasoning for the
first time. It mirrors the outline of the module given in Section 2:

1. We first start with an overview of the MINIFN programming
language. Students who have not yet been exposed to func-
tional programming follow an introduction to the core func-
tional programming concepts needed for our module. Students
who already have exposure to functional programming can in-
stead choose to read a short overview of MINIFN’s functional
programming language.

2. Next, we introduce basic proofs by way of an introduction
to MINIFN’s proof language. We incrementally build up more
interesting propositions from trivial ones to show the purpose
of each MINIFN proof command and also impart the structure
of proof onto the student.



3. We then proceed to the heart of the tutorial: induction. In the
tutorial, we motivate induction by giving a simple example
where case analysis, destruct, fails because it leads to an
endless cycle of destructs.

4. We finally close the online tutorial with a discussion of informal
and formal proof.

Keeping in line with our learning objectives, a major theme of
this tutorial is the connection between paper proofs and mecha-
nized proofs that the students write in MINIFN. In this tutorial we
stress that students develop proofs on paper as they normally would
and then use the MINIFN proof system as a checker. By exposing
the student to formal logic checked by a proof assistant, we hope
that students gain insight into the mechanics of induction and con-
fidence to carry out these proofs correctly on paper. And by using
the MINIFN programming language to motivate these proofs, we
hope that students come to realize the deeper connection between
inductive datatypes and inductive reasoning.

This prototype tutorial uses an online-based implementation of
MINIFN. Figure 2 gives an example of this widget as it is em-
bedded within the tutorial. The MINIFN language is type-checked
in-browser, and the resulting AST is sent to the server where it is
translated to Coq, evaluated, and then sent back to the browser in a
processed form. These widgets are interspersed throughout the tu-
torial to allow students to quickly try out examples and exercises.
We hope that this online IDE reduces the barrier to adoption for
both students and educators.

5. Conclusion
Our induction module is still a work-in-progress. We close with
related work and our future directions for this module.

5.1 Related Work
Our work is inspired by two other educational efforts here at the
University of Pennsylvania. The first is our efforts to introduce
functional programming into our CS2 course [14] which is an
exemplar in the 2013 curriculum revision [7]. This course features
the OCaml programming language in its first half to give students
a firm mathematical foundation to their programming endeavors
as well as level the playing field among the diverse students we
find in our introductory sequence. The second is our graduate-
level programming languages course, Software Foundations [10],
which features the Coq proof assistant. In particular, the course
features a rapid introduction to functional programming in Gallina,
Coq’s specification language, and proving basic properties over
those specifications with Coq’s tactics language. Our module can
be seen as a refinement of this process, tailor-made for the purpose
of learning induction.

Other universities have also adopted functional programming
early in the curriculum. Most notably, Carnegie Mellon Univer-
sity’s Principles of Functional Programming course [1], features
a module on proving properties of simple functional programs. In
this case, the properties are proven on paper only, without the aid
of a proof assistant.

Finally, proof assistants themselves have been used as the pri-
mary learning vehicle in a variety of classes. The aforementioned
Software Foundations course at the University of Pennsylvania is
one such example. A more closely related example to our work is
the ProofWeb online proof assistant [5]. ProofWeb acts as an online
front-end for a variety of proof assistants and has been used in sev-
eral classes ranging from formal logic to type theory. ProofWeb ex-
poses the full power of the proof assistant to the user which makes
it too heavyweight for our more modest purposes.

Notably, the University of Oklahoma and Northeastern both
have used ACL2 in the context of software engineering and intro-

ductory programming courses to expose students to the power of
combining programming with theorem proving [8]. In particular,
the ACL2 Dracula [3] and the ACL2 Sedan (ACL2s) [2] projects
demonstrate the potential of employing theorem proving to link
theory with programming. Like MINIFN, Dracula and ACL2s both
provide interfaces to the students that tightly interweave the act of
programming and proof. However, where these efforts differ from
MINIFN is that MINIFN requires the student build the proof manu-
ally whereas ACL2 automatically searches for the proof. This dif-
ference reflects the different philosophies of the two projects. The
efforts around ACL2 Dracula and ACL2s are designed to expose
students to software verification with practical theorem proving
tools whereas MINIFN strives for the more modest goal of helping
students understand the mechanics of inductive proofs and bridging
formal and informal reasoning.

5.2 Future Work
Our induction module and the MINIFN system are both in the early
proof-of-concept stage. We are currently refining the flow of the
module, the examples we present, and layout and presentation of
the tutorial.

5.2.1 Improvement
As mentioned previously, MINIFN is backed by the Coq proof
assistant. The initial version of MINIFN is heavily influenced by
this decision. In particular, the MINIFN proof commands are taken
from the Coq tactics language. While this has made our proof-of-
concept easier to implement, these commands may not be ideal as
a surface language for the student. For example, we likely want to
force the student to explicitly name the cases they expect when
performing a destruct or induction, e.g., induction: n =
O, n = S n’, something that Coq does not natively provide. This
way, the proof script that they write better reflects the structure of
the proof. Other syntactic improvements are certainly possible to
provide the student with a better experience.

Another area of improvement is extending the tutorial to cover
more advanced topics regarding induction proofs. For example,
one of the most difficult concepts for students is knowing when
to strengthen their induction hypothesis. We believe that machine-
checked proofs will help demystify this process for the student.
However, the addition of more complicated proofs will likely re-
quire that we extend MINIFN with extra machinery or commands
which will need to balanced against keeping the system tractable
for students to learn.

One final area of improvement, and one of our motivations for
pursuing this line of work, is employing the techniques of program
synthesis to automatically generate practice induction problems
and solutions as well as give feedback to the student [4]. We be-
lieve that our approach gives us additional leverage in this domain
because our choice of using Coq as the back-end means that our
proofs and programs have a “programmatic” representation in the
Calculus of Inductive Constructions that can be amendable to exist-
ing synthesis techniques with some adaption, e.g., sketching [11].

5.2.2 Deployment
We plan on releasing our work along two vectors:

1. Internally as an augmentation to the induction portion of our
discrete mathematics class (CIS 160) in the spring and

2. Externally as a publicly available tutorial usable by anyone over
the Internet.

The University of Pennsylvania introductory programming se-
quence (CIS 120, in particular) uses the OCaml programming lan-
guage, so the syntax of MINIFN closely resembles OCaml to ease



Figure 2. The MINIFN online widget.

the transition into our module. This fall we are planning to pilot
the tutorial with a select group of students and TAs from CIS 160.
After integrating their feedback into our tutorial, we plan to widen
our scope to the whole class. In this setting, we would like to eval-
uate the efficacy of our module with respect to our current, more
traditional approach to teaching induction. We hypothesize that we
will be able to leverage our student’s existing knowledge of OCaml
to make learning induction more concrete and directly applicable
to what the student already knows: programming.

Furthermore, one of the major appeals of this work is its poten-
tial to scale well to situations outside of the UPenn classroom. We
plan on continuing to refine our web offering of the module so that
interested educators can use it either as a supplement or even po-
tential replacement to their current methods for teaching induction.
We also hope that by offering our module on the web that interested
students and computer science practitioners that are interested in
strengthening their induction skills find it a useful resource.
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