
Toward Effectively Reinforcing Test-Driven Development

Kevin Buffardi

Virginia Tech
2202 Kraft Drive

Blacksburg, VA 24060
kbuffardi@vt.edu

Stephen H. Edwards

Virginia Tech
2202 Kraft Drive

Blacksburg, VA 24060
edwards@cs.vt.edu

Abstract

Learning contemporary software development practices and ac-
quiring good programming habits are valuable skills in computer
science education. However, there are challenges in encouraging
students' adherence to the incremental testing pattern involved in
Test-Driven Development. We propose a model for an adaptive
feedback system to observe and encourage incremental testing.
Using data analysis of 6,953 submissions of students' program-
ming assignments, we offer insight into students' development
habits and their interaction with our adaptive feedback system.
Based on our findings, we evaluate a model for measuring incre-
mental testing and suggest approaches for improving reinforce-
ment.

Categories and Subject Descriptors K.3.2 [Computers and

Education]: Computer and Information Science Education; D.2.5
[Software Engineering]: Testing and Debugging.

General Terms Measurement, Human Factors, Verification.

Keywords Test-driven development, unit testing, reinforcement,
adaptive feedback, automated grading, instructional technology.

1. Introduction

Test-Driven Development (TDD) is a process that emphasizes an
incremental "test a little, code a little" approach [2]. TDD's popu-
larity in industry [10] and the Accreditation Board for Engineer-
ing and Technology's (ABET) requirement to prepare students
with “An ability to use current techniques, skills, and tools neces-
sary for computing practice" [1] provide compelling reasons for
including TDD in computer science curriculum. However, while
some universities' introduced TDD into computer science classes,
reports have yielded mixed results.

In professional settings, TDD is lauded for improving confi-
dence and quality of code [3][7]. By practicing TDD in school,
students should benefit from improving their code and testing as
well as gaining practical experience in an established software
engineering method. In addition, the metacognition involved in
writing tests before their corresponding solutions may encourage
students to engage "reflection-in-action" in place of weaker "trial-
and-error" strategies [9].

However, learning TDD also comes with its challenges. In par-
ticular, multiple studies have found that despite TDD's benefits,
students and novice programmers often require extra motivation
to adopt test-first strategies [5][11][13][15]. However, little re-
search exists on approaches for encouraging students to adopt the
software engineering method.

Methods in general can be difficult to teach and evaluate since
traditional school assignments only involve grading a single rep-
resentation of each student's completed assignment. Without

insight into processes and behaviors exhibited over time, it is
difficult to observe adherence to methods. However, with the
introduction of automated grading systems such as Marmoset [14]
and Web-CAT [8], students can submit their work multiple times
while they improve their work. With multiple submissions of
programming assignments, we can begin to observe students'
behaviors and patterns of development.

Unfortunately, there are no practical means for evaluating test-
first development on programming assignments since tests with-
out their corresponding solutions would be unreasonable to evalu-
ate. However, while we might not be able to observe test-first
behavior, students can at least demonstrate incremental testing by
submitting corresponding tests and solutions.

With each submission of their work, we gather a snapshot of
students' development process. In addition, each time a student
interacts with an automated grading system, we have the oppor-
tunity to evaluate her work and apply teaching interventions to
improve her learning. With automated interventions during stu-
dents' development process, we have a unique opportunity to
measure and influence students' behavior mid-assignment. By
encouraging students to test early and incrementally, we hope to
help students produce higher quality code and testing while also
developing practical TDD experience and appreciation.

2. Related Work

Melnik and Maurer acknowledged that adopting Agile methods
may be more challenging in an academic setting than it is in in-
dustry. Consequentially, they surveyed students' opinions of
different aspects of eXtreme Programming (XP), including Test-
Driven Development (TDD). They found generally positive views
of all aspects of eXtreme Programming from 240 respondents,
representing a variety of demographics with differing degrees of
experience and exposure to XP.

Those students who believed following XP improved the qual-
ity of their code attributed the improvement to both pair pro-
gramming and TDD. In addition, they discovered a weak positive
correlation between attitudes toward TDD and students' ages.
However, they also found that some students struggled to think
with a test-first approach. They reasoned this difficulty may be
due to TDD "almost like working backwards" by drawing atten-
tion to documenting design early through writing unit tests [13].

Similarly, Janzen and Saiedian compared the opinions and ac-
ceptance of TDD between novice and mature developers in com-
puting courses. They found that mature developers are more
willing to accept TDD. Furthermore, students were significantly
more likely to choose to follow TDD in the future after having
tried it [11].

To aide teaching TDD, Spacco and Pugh leveraged Marmoset
[14], a rich submission system that includes public (made availa-

ble to the students) and release tests (obscured from students).
Students benefit from receiving prompt, online feedback including
how their code performs against the tests. While the specifics of
release tests are obscured from the students, they receive the name
of the first two test methods that fail on a submission to offer
some guidance in identifying the problem. Marmoset also pro-
vides measurements of test performance and coverage. Despite
the emphasis and prompt feedback on testing, Spacco and Pugh
recognize that many students still favor a "test-late mentality of
writing their implementation and then testing it at the very end"
and call for a need to design incentives to motivate students to test
early [15].

Positive reinforcement can be a powerful tool in scaffolding
new behaviors. Schedules of reinforcement have encouraged
target behaviors in both games and learning environments [12].
Linehan suggests a model for leveraging Applied Behavior Anal-
ysis to motivate target behaviors through a process of measuring
performance, analyzing performance, presenting feedback, and
defining a rewards schedule that coordinates with the target be-
havior. Likewise, we have the unique opportunity to measure,
analyze, and use positive reinforcement to influence students'
development processes.

Meanwhile, we have been teaching TDD in CS1 and CS2
courses. In a preliminary study of a five-year data set of snapshots
of students' work, we found positive correlations between indica-
tors of incremental testing and consequential outcomes. Specifi-
cally, we identified two measurements of quantity of testing aver-
age test statements per solution statements (TSSS) and average
test methods per solution method (TMSM) with small but statisti-
cally significant correlations with functional correctness and test
coverage. Similarly, average test coverage across all snapshots for
an assignment was positively correlated with final functional
correctness [6]. However, despite its advantages, we also wit-
nessed some students who resisted adhering to TDD.

In a separate study, we investigated students' attitudes toward
the test-first and incremental unit testing aspects of TDD [5].
Similar to reports in related literature, we discovered that students
generally appreciated the value of testing but were apprehensive
to adopt test-first habits. While students valued an incremental
unit-testing approach, most students did not follow strict test-first
procedures. Likewise, we identified a close relationship between
students' perception of how helpful these aspects of TDD are and
how likely they are to adhere to them.

This relationship is likely reciprocal in that expecting TDD to
help should make students more likely to adhere; likewise, adher-
ing to TDD should advocate students' appreciation of its benefits.
However, by their own reporting, most students did not persistent-
ly write tests in small increments nor did they test first. For these
reasons, we recognized a need to better understand students' de-
velopment processes and investigate approaches to encouraging
adherence to TDD.

3. A Model for Adaptive Feedback

To observe students' development processes, it is necessary to
gain insight into changes in their work over time. By using Web-
CAT [8]—an automated grading system—to collect student sub-
missions and provide rapid evaluation of their performance, stu-
dents are encouraged to submit several versions of their work as
they refine their assignments. Among other features, Web-CAT
evaluates students' code on its correctness and coverage. Correct-
ness is determined by the percent of instructor-provided tests
(obscured from students) successfully passed by the student's
solution. Coverage is determined by the amount of solution code
evaluated by the students' own unit tests. Upon submitting their
work, students promptly receive results of their correctness and
coverage scores. Students may submit their work unlimited times,
without penalty, until the assignment deadline.

With each time students submit and receive feedback, there are
opportunities to assess their adherence to incremental testing
methods and trigger interventions to encourage the desired behav-
ior. Ideally, incremental testing would be demonstrated by main-
taining high (at or near 100%) coverage while the correctness
gradually increases. Consequently, we designed the system to
reinforce this behavior and to correct students who deviate from
it.

Our adaptive feedback system supplements Web-CAT's cor-
rectness and coverage assessment by monitoring progress from
one submission to the next. Students receive positive reinforce-
ment through images and brief messages acknowledging im-
provements in their solution and/or testing, as shown in Figure 1.
When their submissions do not demonstrate improvement, the
feedback encourages them to improve their testing by offering
additional incentives. In particular, students receive hints about
how to improve their solution as a reward for improving the thor-
oughness of their testing. Figure 1 illustrates reinforcing feedback
with two hints displayed.

The system adaptively caters hints to help students correct
problems with their solutions that are identified by failed instruc-
tor tests. Each instructor unit test includes a hint message to pro-
vide some guidance about why it failed. Closely related instructor
tests may generate identical hint messages, but duplicates are
combined and the collection of hints is sorted so precedence is
given to hints with more occurrences.

Students earn their first hint from their first submission that
demonstrates some progress on both the solution and testing with
non-zero correctness and coverage scores. To earn additional hints
on subsequent submissions, students have to meet a minimum
threshold of coverage (85% or greater) to demonstrate they are
testing their solution substantially. Given the minimum coverage
is met, students can earn hints by either maintaining 100% cover-
age and making changes to their solution code, or by improving
their coverage over the previous submissions. Following this

Figure 1. The Web-CAT plugin displays adaptive feedback with positive reinforcement and hints.

model, students are required to begin testing in early submissions
and continue to meet progressively higher coverage requirements
as they progress.

If a student earns hints on sequential submissions, she may re-
ceive the same hints in both submissions' feedback. On its face,
this approach may not seem to reward the student for earning
hints. However, it allows the student to track the flaws in her
assignment. For example, if a previously seen hint is replaced by a
new hint, one may falsely conclude that the bug that generated the
hint has been resolved. Instead, earned hints are only dismissed
once their corresponding instructor test passes.

If students deviate from the incremental testing process, they
do not receive hints on their submissions until they demonstrate
sufficient coverage again. The system also controls for potential
attempts to manipulate progress measurements into providing
unearned hints. For example, the system records the highest cor-
rectness score achieved so far to prevent students from deleting or
sabotaging their solution in one (worse) submission only to give
the illusion of improvement by reverting to the previous (better)
solution in the next submission.

4. Method

4.1 Intervention Experiment

As described in detail in our previous publication [4], we evaluat-
ed the impact of the adaptive feedback system, by comparing
Web-CAT assignment data from two semesters of a CS2 course,
Software Design and Data Structures. The first semester, students
submitted their assignments to Web-CAT with the adaptive feed-
back system disabled. Instead of earning hints by incrementally
testing, students received up to three hints at a time when instruc-
tor tests failed. Instead of requiring certain behaviors to earn
hints, these students received their hints for "free."

The second semester used the adaptive feedback system for
programming assignments. At the conclusion of the semester, we
compared measurements of incremental testing between the first
(control) and second (experimental) semesters. Average test
methods per solution method (TMSM) measured the relative
quantity of test code while average coverage measured the quality
or thoroughness of tests throughout the development process [6].
High values for either measurement indicates strong incremental
testing patterns. Final correctness and coverage scores for each
assignment were also analyzed to investigate potential effect of
the adaptive feedback intervention on the assignments' outcomes.

Participation was voluntary and only data from students who
consented to have their data analyzed were included. 78 of 129
(60%) enrolled students from the experimental semester and 87 of
130 (66%) from the control semester consented. Submissions with
incomplete or errant information (from cancelled or non-
compiling submissions) were excluded.

In addition to investigating the adaptive feedback system's im-
pact on code and testing quality, we also surveyed students to
gauge their attitudes and perceptions of Test-Driven Develop-
ment. Along with the survey, questionnaires measured students'
fear of negative evaluation and anxiety when performing pro-
gramming assignments [4].

4.2 Model Behavior Analysis

As a system designed both to measure software metrics and to
influence students' behavior, the adaptive feedback system re-
quires both effective technical and social components. The fol-
lowing factors are necessary to affect change in programming
assignment outcomes:
1. The system accurately measures and identifies development

patterns that indicate incremental testing
2. The system matches observed behaviors with corresponding

feedback
3. The adaptive feedback provides sufficiently valuable incen-

tives to motivate student behavior
4. The behavior is executed effectively to impact measurable

improvement in code quality
A failure to meet any one of these parts will likely disrupt any
chance for measurable change. However, by investigating each
objective independently, we can better evaluate the nuances of a
system serving both engineering and social roles. To examine
each objective, we performed post-hoc analysis on 6,953 submis-
sions from the experimental semester with the aim to identify
patterns that indicate: reliability in measuring incremental testing;
frequency and scale of incentives corresponding to measured
behavior; and changes in testing strategies and code quality.

The analysis included the development of 319 programming
assignments, each averaging approximately 22 submissions
(M=21.80, sd=16.55). For each submission, we recorded several
measurements, including time of submission, amount of code,
solution correctness, and testing coverage. We omitted assign-
ments without multiple submissions for a student because a single
submission cannot demonstrate a process of development. Since
the number of submissions and amount of time spent on develop-
ment varied for each assignment, we concentrated on notable
submission milestones within each assignment:
 Initial: The first submission that earned an initial hint by

achieving non-zero correctness and/or coverage scores
 Threshold: The earliest submission that surpasses the 85%

coverage threshold to earn additional hints beyond the initial
milestone

 Maximum: The earliest submission where the student first
reaches the highest correctness score attained for that assign-
ment
The initial milestone provides our earliest insight into each

student's work. Meanwhile, the threshold milestone identifies
where in the student's development process that he first has sub-
stantial testing. The maximum milestone helps distinguish late
development patterns. Once a student reaches his maximum cor-
rectness, he may conclude his work on the assignment by making
last changes to style and documentation, or he may demonstrate
late testing practices. To account for varying amount of time
spent on an assignment, the time recorded for each milestone
reflects the time elapsed on to a normalized scale from first (0.0)
to last (1.0) submission for that assignment. From this stage for-
ward, we refer to an assignment's normalized time elapsed as
relative work-time. Table 1 summarizes the mean, standard
deviation, and Shapiro-Wilk test, where a value below 0.01 re-
jects the hypothesis of normal distribution. Since W<0.0001 for
each metric, the Mann–Whitney–Wilcoxon test for repeated
measures was used to compare means from non-parametric sam-
ples.

To begin characterizing different testing strategies, we explored
when in their development processes students first demonstrated
substantial testing: the threshold milestone. Figure 2 illustrates
the distribution of the relative time of the threshold milestone
within each assignment. The distribution shows two major peaks:
one where students tested substantially within the first 10% of
their submission time and another where students did not test
substantially until within the last 20% of their work. Consequent-
ly, we grouped students according to the time of their threshold
milestone.

Students with a threshold milestone at or below 0.2 belong to
the Early group. Students with a threshold at or above 0.8 belong
to the Late group and everyone in between belongs to the Inter-
mediate group. Approximately 32% of assignments are in the

Early group, 34% in the Intermediate group, and 23% in the Late
group. 11% of assignments never reached the 85% threshold for
coverage so we grouped them as Neglectful testers. We also iden-
tified that only 3% of students were in the Early group for all of
their assignments; 1% of students were in the Intermediate group
for all assignments, and 1% of students belonged to the Late
group for all assignments. The remaining 95% of students be-
longed to at least two different groups across different assign-
ments. It is safe to conclude that students practice a variety of
testing strategies for different assignments.

5. Results

5.1 Intervention Experiment

The results described in "Impacts of Adaptive Feedback on
Teaching Test-Driven Development" outline a series of hypothe-
ses tested that found no measurable difference in the control and
experimental groups. Students exposed to the adaptive feedback
system demonstrated no significant differences in either correct-
ness or coverage. Likewise, there were no significant differences
in other metrics for measuring incremental testing, such as aver-
age coverage and average TMSM.

The surveys provided mixed results where the control group
considered unit testing more helpful than the experimental group.
However, the experimental group rated the helpfulness of test-first
development higher than the control group. Lastly, although the
adaptive feedback could have potentially increased anxiety for
those adverse to negative evaluation, the experimental group
showed no significant difference from the control group's fear of
negative evaluation or project anxiety.

While it is disappointing to find that the adaptive feedback sys-
tem did not affect improvements in TDD adherence, perceptions,
or outcomes, it is important to note that despite earning fewer
hints, the adaptive feedback system did no apparent harm either.
Even more importantly, the null results indicate a need to investi-
gate why the model failed to affect student behavior. The experi-
mental results magnified the importance of data mining for clues
about students' interaction with the system.

5.2 Behavior Model Analysis

After categorizing each assignment into Early, Intermediate, Late,
and Neglectful testing groups, we compared the each group's
trends. Figure 3 illustrates the timing and coverage patterns for
initial, threshold, and maximum milestones.

The Early group averaged submitting fewer times (M=23.16,
sd=15.96) than the Intermediate group (M=27.06, 18.19) ap-
proaching significance (p=0.09). However, the Early group earned
hints on a significantly higher percentage (p<0.0001) of their
submissions (M=0.6722, sd=0.2275) than the Intermediate group
(M=0.5025, sd=0.2755). Likewise, Intermediate earned hints
more often (p<0.001) than Late (M=0.3591, sd=0.2529) and Late
more often (p<0.001) than Neglectful (M=0.1984, sd=2022).

As illustrated above in Figure 3, the Early group tended to earn
hints earlier in their development as well. The Early group
reached the Threshold milestone (M=0.0553, sd=0.0536) signifi-
cantly sooner (p<0.0001) in their development than the Intermedi-
ate (M=0.4966, sd=0.1737), and Late (M=0.9280, 0.0641) groups.
Likewise, Intermediate reached the Threshold significantly sooner
in their development process than Late (p<0.0001).

From the clear differentiation in the temporal proximity and
frequency of earning hints between groups, we can conclude that
the adaptive system is successfully identifying different levels of
adherence to incremental testing. This observation supports the
first of four system objectives, as previously stated: "The system

Table 1. Mean, standard deviation, and Shapiro-Wilk test

for normality of milestone metrics.

 Mean sd W

No. of submissions 21.80 16.55 < 0.0001*

No. of submissions

earning hints
10.01 9.60 < 0.0001*

Final Correctness 0.8251 0.2789 < 0.0001*

Final Coverage 0.9383 0.1691 < 0.0001*

Initial Time 0.1353 0.2722 < 0.0001*

Initial Coverage 0.6375 0.3064 < 0.0001*

Threshold Time 0.4519 0.3607 < 0.0001*

Threshold Coverage 0.9198 0.0792 < 0.0001*

Maximum Time 0.7878 0.3230 < 0.0001*

Maximum Coverage 0.9386 0.1746 < 0.0001*

Figure 2. Grouping and distribution of when students first

achieve at least 85% coverage within their relative work-time

accurately measures and identifies development patterns that
indicate incremental testing."

By reviewing the feedback that students received, we can also
confirm that the system accurately observed progress in correct-
ness and coverage and prepared hints corresponding with failed
instructor tests. Therefore, the second objective is also satisfied:
"The system matches observed behaviors with corresponding
feedback." However, since the adaptive feedback system did not
accomplish its goal of encouraging incremental testing, we can
investigate potential problems with the two remaining factors:
3. The adaptive feedback provides sufficiently valuable incen-

tives to motivate student behavior
4. The behavior is executed effectively to impact measurable

improvement in code quality
If we trust our previous findings [4][5], then we should be confi-
dent that Test-Driven Development improves test and solution
quality. Therefore, it appears as though the trouble with the adap-
tive feedback is that the incentives and reinforcement are not
motivating the target behavior.

6. Discussion

Although we demonstrated that the Early group—who showed the
closest adherence to early and incremental testing—received hints
earlier and more often in their development process, it is possible
that the difference in the incentives they received were insuffi-
cient to influence measurable behavior change. A potential reme-
dy would be to amplify the value of the incentives by accumulat-
ing hints. If sequential submissions each earned two hints, by
accumulating the hints earned, the student would receive four
hints on their latter submission instead of two. In Figure 4, we
illustrated the number of hints earned by each group if the system
worked exactly the same but accumulated earned hints.

In this hypothetical scenario, the Early group (M=27.93,
sd=20.83) would accumulate significantly more (p<0.05) hints
than the Intermediate group (M=23.26, sd=19.23). Likewise, the

Intermediate group would accumulate significantly more
(p<0.0001) hints than the Late group (M=9.59, sd=8.86), which in
turn would accumulate more hints (p<0.0001) than the Neglectful
group (M=1.00, sd=0.00). However, we do not predict that accu-
mulating hints will solve the problem alone. In fact, we recognize
distinct problems with the accumulating hints approach. Firstly,
while groups eventually accumulate a significant different number
of hints over the period of their development, the difference in
early incentives are still negligible. Are three accumulated hints
much more influential than two or one when members of the
different groups are exhibiting different testing behaviors?

Secondly, by accumulating hints over time, the incentives do
not really pay-off until late in development. That means that Early
testing strategies do not really receive substantial reinforcement
(compared to the other groups) until well into their development.
Such delayed reinforcement is not likely to be influential. Fur-
thermore, as students reach later in their development processes,
the hints earned likely offer diminishing returns.

The further students are in their development, typically their
correctness scores are higher as well. Higher correctness score
indicates that the code is failing fewer tests and consequently has
fewer hints to generate. Even if an Early tester has accumulated
23 hints when she is most of the way through her development, it
is unlikely that she is simultaneously failing enough tests to gen-
erate 23 hints. Lastly, hints are likely most helpful early in devel-
opment so that problems in the solution can be identified and
fixed when the solution is less complete.

Our adaptive feedback system purposely rewarded the first
submission where students demonstrated at least a little coverage
with the hopes that it would reinforce testing early. However, the
flaw with that design is it rewards Intermediate and Late testers
with negligible coverage with the identical incentive as an Early
tester who may already have near 100% coverage. While the
initial incentive was designed with good intentions, it is likely
detrimental to the goal of reinforcing early, thorough testing more
than lackluster testing.

Consequently, our diagnosis of the adaptive feedback system
is that its incentives need greater differentiation according to the
measured behavior. Reinforcing early behavior may be the best
opportunity to convey value in incremental testing. Therefore, it is
important to make a strong impact particularly on early feedback.
Setting low standards for incentives on early submissions is espe-
cially counterproductive.

Figure 3. Progress in code coverage between groups of dif-

ferent development patterns at initial, threshold, and maxi-

mum milestones.

Figure 4. Progressive number of incentives earned by accu-

mulating hints at development milestones.

In conclusion, the adaptive feedback system shows promise in
measuring incremental testing patterns. However, new reinforce-
ment schedules and incentives need to be explored to
improve the likelihood of influencing student adherence to target
behaviors. With future research, we plan on experimenting with
progressively stronger incentives for early submissions. Further-
more, students may benefit from receiving salient, concrete goals
for improving their testing. As we discover better methods for
reinforcing behavior, adaptive feedback has potential as a novel
approach to automatically measuring and encouraging develop-
ment methods.

References

[1] ABET (2013). "Criteria for Accrediting Computing Programs, 2013-
2014." Retrieved May, 2014, from http://www.abet.org/

[2] Beck, K. (2003). Test-Driven Development by Example, Addison
Wesley.

[3] Bhat, T. and N. Nagappan (2006). Evaluating the efficacy of test-
driven development: industrial case studies. Proceedings of the 2006
ACM/IEEE international symposium on Empirical software engi-
neering. Rio de Janeiro, Brazil, ACM: 356-363.

[4] Buffardi, K. & Edwards, S.H. (2013) "Impacts of Adaptive Feedback
on Teaching Test-Driven Development." Proc. of SIGCSE, Denver,
Colorado.

[5] Buffardi, K. and S. H. Edwards (2012). Exploring influences on
student adherence to test-driven development. Proceedings of the
17th ACM annual conference on Innovation and technology in com-
puter science education. Haifa, Israel, ACM: 105-110.

[6] Buffardi, K. and S. H. Edwards (2012). "Impacts of Teaching Test-
Driven Development to Novice Programmers." International Journal
of Information and Computer Science 1(6): 9.

[7] Canfora, G., A. Cimitile, et al. (2006). Evaluating advantages of test
driven development: a controlled experiment with professionals.
Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering. Rio de Janeiro, Brazil, ACM: 364-
371.

[8] Edwards, S. H. "Web-CAT." 2013, from https://web-cat.cs.vt.edu.

[9] Edwards, S. H. (2004). "Using software testing to move students
from trial-and-error to reflection-in-action." SIGCSE Bull. 36(1): 26-
30.

[10] Fraser, S., D. Astels, et al. (2003). Discipline and practices of TDD:
(test driven development). Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. Anaheim, CA, USA, ACM: 268-270.

[11] Janzen, D. S. and H. Saiedian (2007). A Leveled Examination of
Test-Driven Development Acceptance. Proceedings of the 29th in-
ternational conference on Software Engineering, IEEE Computer So-
ciety: 719-722.

[12] Linehan, C., B. Kirman, et al. (2011). Practical, appropriate, empiri-
cally-validated guidelines for designing educational games. Proceed-
ings of the 2011 annual conference on Human factors in computing
systems. Vancouver, BC, Canada, ACM.

[13] Melnik, G. and F. Maurer (2005). A cross-program investigation of
students' perceptions of agile methods. Proceedings of the 27th inter-
national conference on Software engineering. St. Louis, MO, USA,
ACM: 481-488.

[14] Spacco, J. "Marmoset." 2013, from http://marmoset.cs.umd.edu/.

[15] Spacco, J. and W. Pugh (2006). Helping students appreciate test-
driven development (TDD). Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages,
and applications. Portland, Oregon, USA, ACM: 907-913.

