

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGPLAN’05 June 12–15, 2005, Location, State, Country.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Teaching Future Software Developers

Václav Rajlich

Wayne State University
Department of Computer Science

Detroit, MI 48202, U.S.A.

rajlich@wayne.edu

Abstract

Teaching software developer skills should be a fundamental part
of software engineering curriculum. The current industry relies on
evolutionary and agile processes that add one feature or property
at a time. The main task of these processes is software change.
Results of the recent research allow this topic to be taught on both
undergraduate and graduate level. Phased model of software
change (PMSC) divides the task of software change into phases
that are sufficiently well-understood and suitable for teaching in
the undergraduate course. Among the phases, concept location
finds the module(s) to be changed, impact analysis assesses the
full extent and difficulty of the change, prefactoring reorganizes
software to make it suitable for the change, actualization imple-
ments the new feature, and postfactoring cleans up the aftermath.

Categories and Subject Descriptors D.2.9 [Management]:
Software Process Models

General Terms Management, Verification.

Keywords Phased model of software change, concept location,
impact analysis, actualization, refactoring, verification, software
development, teaching

1. Introduction

While software engineering is more than just software develop-
ment, the software development is the core and indispensable part
of software engineering education. This is what most of the grad-
uates will do, either in their industrial careers or in their further
studies in the graduate schools. Moreover, the other parts of soft-
ware engineering exist only for the purpose of supporting soft-
ware development, and hence their proper grasp requires fluency
in software development skills.

According to the recent surveys, agile development moved in-
to the position of the current software development mainstream
[1]. However for the purpose of this discussion, the following
terminological clarification may help: Evolutionary processes are
all processes that build the program by adding one feature after
another to an already existing – although incomplete – program.

Agile processes are special evolutionary processes which have
specific and well-defined process roles and practices, like daily
meetings, test-first development, and so forth. The following
formula describes the relationship of the process categories:

Agile ⊂ Evolutionary processes

The fundamental task common to all evolutionary processes

including agile processes is software change that adds a new
feature or new property to software [2]. Since this task is so fun-
damental, it should be a part of every software engineering curric-
ulum.

In our undergraduate software engineering course, we teach
the phased model of software change, see section 2. Section 3
briefly summarizes past research that made this approach possi-
ble, and the future research that aims to help software developers
in their tasks and further improve teaching software development.

2. Course Topics

Our undergraduate software engineering course (csc4110) teaches
software developer skills and emphasizes developer’s tasks in
agile and evolutionary software development processes. A par-
ticularly important task is software change; the rationale for this
choice is summarized in [3].

2.1 Phased Model of Software Change (PMSC)

PMSC consists of several phases; PMSC process enactment con-
sists of some or all of these phases. Our course presents all phases
and for each, it presents select applicable techniques. It also serves
as an introduction to the sizeable research literature dealing with
each of the phases. The approach is explained in detail in [4].
Additional references are [2, 5-7]

 Software change starts with initiation where the programmers
decide to implement a specific change in the software. This phase
includes activities that are traditionally presented as requirements
elicitation, analysis, tasking, and prioritization.

The next phase is concept location in which the developer
finds the software code modules that ought to be changed. These
modules are the places where the new functionality or the bug
correction resides. Concept location may be an easy task in small
programs, but it can be a very difficult task in very large programs
[8, 9].

Very often, software change is not localized in a single pro-
gram module, but it affects other parts of software. Impact analy-
sis is a phase that determines all these other parts. It starts where
concept location stopped, i.e. it starts with the modules identified

Copyright © 2013 Václav Rajlich

by concept location as the places where the core of the change
should be made. Then, it looks at interacting modules and decides
to what degree they are also affected [10, 11]. Impact analysis,
together with concept location, constitutes the design of software
change, where the strategy and extent of the change is determined
and precedes the phases where the code is actually modified.

Actualization is the phase that implements the new functionali-
ty. The new functionality is implemented either directly in the old
code, or it is implemented and tested separately and then integrat-
ed with the old code via incorporation. In either case, the change
can have repercussions in other parts of software. Change propa-
gation identifies these other parts, making the secondary modifi-
cations. Methodologically, change propagation is similar to im-
pact analysis because it also identifies the other affected modules;
only this time, the actual code modifications are implemented.

Refactoring changes the structure of software without chang-
ing the functionality. During the typical SC, refactoring is done as
two different phases: before the actualization, and/or after. When
it is done before actualization, it is called prefactoring. Prefactor-
ing prepares the old code for the actualization and gives it a struc-
ture that will make the actualization easier. For example, it gathers
all the bits and pieces of the functionality that is going to change
and makes the actualization localized, so that it affects fewer
software modules; this makes the actualization simpler and easier.
The other refactoring phase is called postfactoring. Actualization
can make a mess; Postfactoring is an opportunity to clean-up this
mess. Postfactoring also can address technical debt that has accu-
mulated during previous software changes [11].

Verification aims to guarantee the quality of the work, and it
interleaves with phases of prefactoring, actualization, postfactor-
ing, and conclusion. Verification uses various strategies and tech-
niques, including unit, functional, and structural testing, and
inspections.

Conclusion is the last phase of software change. After the new
source code is completed and verified, the programmers commit it
into a version control system. SC conclusion is an opportunity to
create the new baseline, update the documentation, prepare a new
software release, and so forth. If SC is done by a programmer
within a team, then both the SC initiation and conclusion are team
activities and they may differ depending on the process that the
team uses.

PMSC is an extensive topic and the explanation of individual
phases and the related practices constitutes approximately 50% of
the lecture time.

2.2 Other Lecture Topics

At the beginning of the csc4110 lectures, the course covers history
of software engineering, software life span models, survey of the
most common software project technologies (languages, compil-
ers, version control), and the survey of most common software
models (UML class and activity diagrams, dependency graphs).

The end of the course is devoted to a survey of other software
engineering topics, with the emphasis on software processes. It
surveys team practices of agile and evolutionary software devel-
opment, initial development of software from scratch, the final
stages of software life-span, and reengineering. Additional topics
briefly covered at the very end are software engineering ethics,
management, and ergonomics.

2.3 Laboratory and Projects

The art of software change is practiced in software projects of
realistic size and quality; they are the main topic of the parallel
one-credit co-requisite software engineering lab (csc4111). We
use open source projects that students update. For example in the

past, we used WinMerge (http://winmerge.org/) and this semester,
our project is Easypaint.
(http://qt-apps.org/content/show.php/EasyPaint?content=140877)

Each team of students deals with a project and each individual
student makes several changes of the project code; they are ex-
pected to use PMSC in their software changes. While students
work individually on their changes, they have to resolve the con-
flicts and create new baselines as a team; this is similar to the
current common practice. Table I illustrates a 14-week schedule
of csc4111, with assignments and due dates for software changes
highlighted. As the complexity of the assigned changes increases,
so does the available time.

Table I. Schedule of the lab

1 syllabus, project tools

2 SVN, Merge and Diff, Wiki

3 GUI technologies: QT, Cmake

4

divide the class into teams, assign change

request 1

5 groups meetings + Q&A about the project

6 change request 1 due + team presentation

7 refactoring - in class exercise

8 groups meetings + Q&A about the project

9 change request 2 due + team presentation

10 unit testing - in class exercise

11 groups meetings + Q&A about the project

12 groups meetings + Q&A about the project

13 change request 3 due + team presentation

14 extra credit due

3. Related Research

This approach to the teaching of software development skills was
made possible by the recent research. Several process models of
software change have been proposed, among them TDD [12] or
“Legacy code change algorithm” [13]; they are special cases of a
more general and more recent PMSC used in our course [4].

3.1 Past Research

Individual phases of PMSC received considerable attention from
the research community, and the selected research results, ex-
plained on undergraduate level, constitute large part of the course.
The last missing piece of the PMSC puzzle was concept location
that was investigated mostly during the last 10 years; the review
of the recent results appears in [8]. Our course presents techniques
of concept location that do not require pre-processing of the code
and hence they are easy to use by the students. They are depend-
ency search [14] and grep search including grep query formula-
tion [15]. The refactoring also have been a subject of an extensive
research and our course presents renaming, function splitting, base
class extraction, and component class extraction [16, 17]. Similar
selections have been made from the techniques applicable to the
other phases of software change.

An evolutionary software process constitutes the core of the
undergraduate software engineering course. A discussion of evo-
lutionary process practices in a research context has been pub-
lished in [18].

http://winmerge.org/
http://qt-apps.org/content/show.php/EasyPaint?content=140877

3.2 Future Research

The current and future research in evolutionary code develop-
ment has a goal of improving productivity and quality of develop-
er’s work and may impact undergraduate teaching of software
development in the future. In particular, the individual phases of
PMSC are still investigated and new promising techniques and
practices regularly appear on the scene.

Another research issue is IDE that would seamlessly support
PMSC. A step towards that goal is JRipples that supports concept
location by dependency search, impact analysis, and change prop-
agation [19]. A greater integration of the phases would combine
these techniques with additional techniques and phases.

The effectiveness of the techniques proposed by the research
are empirically validated by user studies and by software reposito-
ry mining [20]; software repositories record the past evolution,
and study of that can lead to new and better tools.

References

[1] (2009). Survey Finds Majority of Senior Software Business Leaders

See Rise in Development Budgets. Available:

http://www.softserveinc.com/news/survey-senior-software-business-

leaders-rise-development-budgets/

[2] V. Rajlich and P. Gosavi, "Incremental Change in Object-Oriented

Programming," IEEE Software, vol. 21, pp. 62-69, July-August 2004.

[3] V. Rajlich, "Teaching Developer Skills in the First Software Engineer-

ing Course," in International Conference on Software Engineering (ICSE),

San Francisco, 2013, pp. 1109 - 1116.

[4] V. Rajlich, Software Engineering: The Current Practice. Boca Raton,

FL: CRC Press, 2012.

[5] N. Febbraro and V. Rajlich, "The Role of Incremental Change in

Agile Software Processes," in Agile Conference 2007, Washington D.C.,

USA, 2007, pp. 92-102.

[6] C. Dorman and V. Rajlich, "Software Change in the Solo Iterative

Process: An Experience Report," in Agile, 2012, pp. 22-30.

[7] V. Rajlich. (2013). “Software Engineering: The Current Practice”.

Available: http://www.cs.wayne.edu/~vip/ProjectAndLabs/index.html

[8] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature location

in source code: a taxonomy and survey," Journal of Software: Evolution

and Process, vol. 25, pp. 53-95, 2013.

[9] M. Petrenko and V. Rajlich, "Concept location using program de-

pendencies and information retrieval (DepIR)," Inform. Softw. Technol.,

vol. 55, pp. 651-659, 2013.

[10] B. Li, Z. Sun, H. Leung, and S. Zhang, "A survey of code-based

change impact analysis techniques," Softw. Test. Verif. Reliab., p. early

view http://onlinelibrary.wiley.com/doi/10.1002/stvr.1475/abstract, 2012.

[11] S. Bohner and R. Arnold, Software Change Impact Analysis. Los

Alamitos, CA: IEEE Computer Society, 1996.

[12] K. Beck, Test driven development: By example: Addison-Wesley

Professional, 2003.

[13] M. Feathers, "Working Effectively with Legacy Code," ed. Upper

Saddle River, NJ: Prentice Hall PTR, 2005.

[14] K. Chen and V. Rajlich, "Case Study of Feature Location Using

Dependence Graph," in Proceedings of the 8th International Workshop on

Program Comprehension (IWPC'00), Limerick, Ireland, 2000, pp. 241-

249.

[15] M. Petrenko, V. Rajlich, and R. Vanciu, "Partial Domain Compre-

hension in Software Evolution and Maintenance," presented at the IEEE

International Conference on Software Comprehension, 2008.

[16] M. Fowler, Refactoring: Improving the Design of Existing Code.

Reading, MA: Addison Wesley, 1999.

[17] R. Fanta and V. Rajlich, "Reengineering Object-Oriented Code," in

International Conference on Software Maintenance, 1998, pp. 238-246.

[18] V. Rajlich and J. Hua, "Which Practices are Suitable for an Academ-

ic Software Project?," in International Conference on Software Mainten-

ace (ICSM), 2013.

[19] M. Petrenko, JRipples. Available: http://jripples.sourceforge.net/

(2011).

[20] H. Kagdi, M. Collard, and J. Maletic, "A survey and taxonomy of

approaches for mining software repositories in the context of software

evolution," Journal of Software Maintenace and Evolution, vol. 19, pp. 77-

131, 2007

.

