

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SPLASH Education Symposium, October 28, 2013, Indianapolis, IN, USA
Copyright © 2013 ACM 1-59593-XXX-X/0X/000X…$5.00.

Software Engineering Curriculum Technology Transfer:
Lessons learned from Ebooks, MOOCs, and SPOCs

Armando Fox
UC Berkeley

fox@cs.berkeley.edu

David Patterson
UC Berkeley

pattrsn@cs.berkeley.edu

Abstract
This paper describes our experience in trying to transfer our re-
vised software engineering curriculum from UC Berkeley to other
universities. Our original plan was just to develop an inexpensive
electronic textbook, but we were swept up in the first wave of
Massive Open Online Course (MOOCs) while we were writing it.
Thus, the paper lists the lessons learned about educational tech-
nology transfer from writing Ebooks and developing MOOCs. To
make it easier for instructors to use MOOC material, EdX offers
Small Private Online Course (SPOCs) We argue that SPOCs and
Ebooks may become the textbook of the 21st Century.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.9: Management; D.2.10:
Design; K.3.2 [Computers And Education]: Computer and
Information Science Education

General Terms Management, Documentation, Design.

Keywords Agile development; cloud computing; education; elec-
tronic book; massive open online course; software as a service.

1. Teaching Software Engineering: Six Challenges
As being a software engineer is one of the most attractive jobs in
the country [1], undergraduate students are understandably eager
to learn software engineering. Within a computer science or com-
puter engineering department, that material is typically taught in a
one semester course or in one or two quarter courses.1 As stu-
dents take typically four courses at time, if we assume a 50 hour
week, that leaves between 1*15*50/4 to 2*10*50/4 or 190 to 250
hours per course. The first challenge is that students have just five
to six full-time weeks to be introduced to a topic as vast as soft-
ware engineering!

The second challenge is that it is unlikely that the faculty
teaching the course are practicing software developers, nor in
most cases do they do research in software engineering. Thus,
they are usually not experts in what they must teach.

A third challenge is that there are many software development
methodologies from which to choose. While it makes sense to
survey many of them to familiarize students with the options,
there are obvious advantages to picking a single one for students
to use on projects, for example, so the staff can answer questions

and find documentation to help students practice the chosen
methodology. It is not easy to know which one to pick.

A fourth challenge is that software engineering textbooks are
primarily surveys of software problems and descriptions of the
many development methodologies for many platforms. Such
surveys are unsatisfying in part because they usually don’t go into
enough detail in any methodology to be able to follow it, and in
part because it is hard to decide which one to use. Reviews of the
most popular textbook in software engineering, first published in
1982 and now in its seventh edition, illustrate this dissatisfaction
[2]: its average quantitative reviews at Amazon.com are 1.7 on a
scale of 5, and few authors would enjoy the comments highlighted
for this book. The lack of good textbooks to help instructors pre-
pare lectures and help students learn on their own adds to the
teaching challenge.

A fifth challenge is that the tools to support many methodolo-
gies are either lacking or too expensive to be deployed in a college
course. The lack of tools makes it hard both for students to follow
the advice in lecture and for instructors to check to see if the
advice is being followed.

A final challenge, in part resulting from the first five, is that
industry commonly complains about the quality of software engi-
neering education. We can’t think of another CS course that is
routinely lambasted by employers of our graduates, which is
ironic since it is arguably one of our most important courses.

The result is that instructors try to lecture about software engi-
neering topics, but students continue to build software more or
less the way they always have; thus, the software engineering
course in practice is often nothing more than a project course. The
faculty reward for agreeing to teach this important topic is often
poor teaching evaluations from their students. This sad but stable
state of affairs is frustrating to instructors, boring to students, and
disappointing to industry.

Fortunately, there is a path that addresses all six challenges.

2. Teaching Software Engineering Agilely2
While one of us developed software part time for a local theater as
a volunteer, and thus was familiar with recent trends in software
development, neither of us were researchers in software engineer-
ing. Hence, we considered ourselves novices when preparing to
teach a software engineering class.

Thus, our first step was to speak to representatives from a half-
dozen leading software companies to understand their complaints

1 While a few programs offer a Software Engineering degree, where
students take a half-dozen such courses, the vast majority of students are
getting CS or CE degrees.
2 This section is derived from Fox and Patterson [3] and Fox and Patterson
[4].

 2

about how software engineering is taught. We were struck by the
unanimity of the number one request from each company: that
students learn how to enhance sparsely-documented legacy code.
In priority order, other requests were making testing a first-class
citizen, working with non-technical customers, performing design
reviews, and working in teams.

We were already planning for students to do projects in teams,
which addressed one of industry’s requests. To gain experience in
working with non-technical customers, we recruited proposals
from nearby non-profit organizations. They proved to be an excel-
lent resource, as non-profits had modest budgets for information
technology and thus welcomed the help provided by teams of
computer science students.

The ACM-IEEE Joint Task Force on Computing Curricula
2013 [5] later confirmed the wisdom including team projects:

In general, students learn best at the application level much
of the material defined in the [software engineering knowledge
area] by participating in a project. Such projects should re-
quire students to work on a team to develop a software system
through as much of its lifecycle as is possible. Much of soft-
ware engineering is devoted to effective communication among
team members and stakeholders. Utilizing project teams, pro-
jects can be sufficiently challenging to require the use of effec-
tive software engineering techniques and that students develop
and practice their communication skills. While organizing and
running effective projects within the academic framework can
be challenging, the best way to learn to apply software engi-
neering theory and knowledge is in the practical environment
of a project.

2.1 Picking a Platform and Methodology

A software project must target some platform and make use of
some development methodology. We decided to pick the plat-
form and methodology that had the best set of programming tools,
for three reasons:
1. Students were much more likely to follow a methodology if

there was a tool that made it easy for the students to do so.
2. If the staff is able to grade the output of the tool, we could ev-

aluate the intermediate stages of the development process, not
just the final project. Such in-process grading inspires students
to follow the advice in the lecture.

3. Given that there are only five to six fulltime weeks to learn
this important field, we hoped that the productivity gains from
the tools would allow students to spend their effort on higher-
level issues of the project.
To motivate students to work on their projects, it’s helpful to

use a platform that lets them create compelling apps. In this Post-
PC Era, mobile applications for smart phones/tablets and Software
as a Service (SaaS) for cloud computing are both compelling.

Software development methodologies can be divided into two
camps:
1. Plan-and-Document. These methodologies try to make soft-

ware development more predictable via careful planning and
extensive documentation. Examples are waterfall, spiral, and
the rational unified process.

2. Agile. Rather than rely on plans and documentation, this ap-
proach embraces change as a fact of life; small teams of de-
velopers continuously refine a working but incomplete proto-
type until the customer is happy with result, with the customer
offering feedback each iteration, which are frequent. Examples
include extreme programming and scrum.

Although the Agile Manifesto was considered controversial when
released in 2001, Agile is an accepted practice today. A recent
survey of 66 large software projects in industry found that the

majority used Agile[6], and the latest editions of the most popular
software engineering textbooks now introduce Agile early [2][7].

2.2 SaaS and Rails

We found that the tools for Agile development of Software as a
Service for cloud computing had by far the best tools, in particular
the Ruby on Rails (“Rails”) programming framework.

Agile emphasizes Test-Driven Development3 (TDD) to reduce
mistakes, which addresses industry’s request to make testing a
first-class citizen; user stories4 to elicit and validate customer
requirements, which aids in working with non-technical custom-
ers; and velocity5 to measure progress. The Agile software phi-
losophy is to make new versions available every one or two
weeks. Clearly, small teams and multiple iterations of incomplete
prototypes sound like a good match to the classroom.

The Agile assumption is basically continuous code refactoring
over its lifetime, which develops skills that can also work with
legacy code. Finally, to address our industrial colleagues number
one request, we have a programming assignment where students
use their Agile skills to enhance legacy code.

Once again, the ACM-IEEE Joint Task force later affirmed our
choice [5]:

… there is increasing evidence that students better learn to
apply software engineering approaches through an iterative
approach, where students have the opportunity to work
through a development cycle, assess their work, then apply the
knowledge gained through their assessment to another devel-
opment cycle. Agile and iterative lifecycle models inherently
afford such opportunities.

To do multiple iterations in a single course—we do four iterations
at UC Berkeley—they must be just one or two weeks in length,
which suggests Agile development. Indeed, with Agile students
have the "space" to make mistakes, analyze them, and make im-
provements for the next iteration throughout the entire course.

SaaS and cloud computing also simplifies the management of
the course. Students can deploy their projects using the same
horizontally-scalable environment used by professional develop-
ers, which is instant, free for small projects, and requires neither
software installation nor joining a developer program. In particu-
lar, it separates the course from instructional computers, which are
often antiquated, overloaded, or both.

2.3 Cucumber Tool: From User Stories to Acceptance Tests

The Rails ecosystem has by far the best tools to support test-
driven development, behavior-driven design, and Agile processes,
many of which are made possible by intellectually deep Ruby
language features such as closures, higher-order functions, func-
tional idioms, and metaprogramming. Because these tools are
lightweight, seamlessly integrated with Rails, and require virtually
no installation or configuration—some are delivered as SaaS—
students quickly learn important techniques by doing them.

Our experience has been that the extra time in the class to
teach Ruby and Rails—as opposed to trying to teach the class
using languages and tools they already use—is more than paid
back in the productivity gains from the Rails tools that they sub-

3 In TDD you first write a failing test case that defines a new feature, and
then write code to pass that test
4 A user story is a few nontechnical sentences that capture a feature that
the customer wants to include in the app.
5 Velocity is calculated by estimated units of work per user story and then
counting how many units are completed.

 3

sequently use. Compared to Java and its frameworks, Rails pro-
grammers have found factors of 3 to 5 reductions in number of
lines of code, which is one indication of productivity.[8,9] Picking
up a new language, framework, and tools has the added benefit of
more realistically demonstrating the lifelong learning expected
from software engineers.

For example, the Cucumber tool turns the user stories from the
non-technical customer into acceptance tests for the app. As a
result, it rewards students who follow the user story methodology
rather than having requirements elicitation feel like just another
bothersome burden that faculty foist on their students in software
engineering courses.

Below is an example feature for a cash register application and
one “happy path” user story (called a scenario in Cucumber) for
that feature [10]:

Feature: Division
 In order to avoid silly mistakes
 Cashiers must be able to calculate a fraction

 Scenario: Regular numbers
 Given I have entered 3 into the calculator
 And I have entered 2 into the calculator
 When I press divide
 Then the result should be 1.5 on the screen

Note that this format is easy for the non-technical customer to

understand and help develop, which is a founding principle of
Agile. It also addresses a criticism from industry. Cucumber uses
regular expressions to match user stories to the testing harness.
Below is the key section of the Cucumber and Ruby code that
automates the acceptance test by matching regular expressions:

Given /I have entered (\d+) into the calculator/ do |n|
 @calc.push n.to_i
end

When /I press (\w+)/ do |op|
 @result = @calc.send op
end

Then /the result should be (.*) on the screen/ do |result|
 @result.should == result.to_f
end

Such tools not only make it easy for students to do what they

hear in lecture, but also simplify grading of student effort from a
time-intensive subjective evaluation by reading code to a low-
effort objective evaluation by measuring it. Cucumber shows the
number of user stories completed, and Pivotal Tracker records
weekly progress and can point out problems in balance of effort
by members of teams. Indeed, these tools make it plausible for the
online course (see Section 4) to have automatically gradable
assignments with some teeth in them. Other ready-to-run open-
source tools measure test coverage, cyclomatic complexity [11],
assignment-branch-condition complexity [12], and code smells.
We provide a Virtual Machine image preloaded with all these
tools and deployable on the free VirtualBox hypervisor or on
Amazon’s Elastic Compute Cloud.

The net effect of this course is to move students out of their
"comfort zone.” Throughout their undergraduate education they
are assigned tasks and projects for which they are given complete
specifications, for which there are complete and known solutions,
and for which they program on familiar platforms in the same

small set of familiar languages. For the most part, this is exactly
what they won't find after graduation. This is the rare course
where students must derive their own analysis and specification of
a project requested by a customer, and where they may be re-
quired to develop software on an unfamiliar platform using an
unfamiliar language and tools for which there is no pre-derived
solution.

2.4 Addressing Criticisms of Agile and Rails

Rails also helps with a criticism of Agile in that TDD and rapid
iteration can lead to poor software architecture. Indeed, the Rails
framework follows the Model View Controller (MVC) design
pattern to simplify development of the classic three-tiered applica-
tions of cloud computing.

One criticism of the choice of Ruby is its inefficiency com-
pared to languages like Java or C++. Since hardware has im-
proved roughly 1000X in cost-performance since Java was an-
nounced in 1995 and 1,000,000X since C++ was unveiled in 1979
[13], the efficiency of low-level code matters in fewer places
today than it used to. We think using the improved cost-
performance to increase programmer productivity makes sense in
general, but especially so in the classroom.

Note that for cloud computing, horizontal scalability can trump
single-node performance; deploying SaaS on the cloud in this
course lets us teach (and test) what makes an app scalable across
many servers, which is not covered elsewhere in our curriculum.
By using the cloud to teach the class, we can offer students the
chance to experiment with scalability.

Figure 1. Course enrollment and instructor and course ratings
(given anonymously by enrolled students, solicited by Eta Kappa
Nu Engineering Honor Society each semester within Berkeley
Engineering) of CS 169 Software Engineering. The first two
offerings are without the SPOC and the last two are with the
SPOC (see Section 5). The course continues to grow; there are
240 students in the Fall 2013 course.

2.5 Evaluations of the UC Berkeley Course

We have offered the course four times over the last four years.
The first evaluation is students voting with their feet. Enrollments
have grown with Moore’s Law from 31 to 161, as Figure 1 shows.
Note that the quantitative evaluation from students has increased

31

66

112

161

5.8 5.7

6.3 6.4
6.1 5.8

4

4.5

5

5.5

6

6.5

7

0
20
40
60
80

100
120
140
160
180
200

Fall 09 Fall 10 Spr 12 Fall 12

R
at

in
g

E
nr

ol
lm

en
t

Enrollment Instructor Rating

Course Rating

 4

as well. Looking at the past 20 years’ offerings of this course, we
have set records for both the size of the class and the average
numerical rating from the students of the class and its instructors.

We also polled past students to see what they thought of the
material after they graduated and took jobs in industry. Figure 2
shows the survey results of Berkeley students from two earlier
course offerings. Just 22 of the 47 respondents had graduated, and
just 19 had done significant software projects. The figure shows
the results of their 26 software projects.

We were surprised that Agile software development was so
popular (68%) and that the cloud was such a popular platform
(50%). Given that no language was used in more than 22% of the
projects, our alumni must be using Agile in projects with lan-
guages other than Ruby. All the class teams had 4 or 5 students,
which happily matches the average team size from the survey.

Figure 3 shows the alumni ranking of the topics in the course
in terms of usefulness in their industrial projects, this time based
on students from the Spring 2012 class, whose content is more up-
to-date. Note that we divided the evaluations into the alumni who
had graduated and were working in industry (on the left) and
those still in school (right).

The majority alumni in industry agreed that the top 11 topics
in the course were important in their jobs and the plurality agreed
with the statement for all but 2 of the remaining 6 topics: pair
programming and velocity. This result is understandable, since
few organizations use pair programming and progress can be
measured in other ways in industry than with velocity. Those who
are still students didn’t agree as strongly as those in industry about
the importance of enhancing legacy code, unit testing, scrum team
organization, JavaScript, and Rails itself. Based on the differing

perspective in Figure 3, we recommend making sure to include
past students working in the “real world” when requesting feed-
back how to evaluate and revise a course.

Another group worth asking was the non-technical customers
of the student projects: 92% said that they were happy or thrilled
with their apps, and 48% tried to hire the students to keep working
on their projects. Our final evaluation is anecdotal comments from
industrial colleagues about the course:

I’d be far more likely to prefer graduates of this program than

any other I’ve seen.
—Brad Green, Engineering Manager, Google Inc.

A number of software engineers at C3 Energy consistently re-

port that this … course enabled them to rapidly attain proficiency
in SaaS development. I recommend this … course to anyone who
wants to develop or improve their SaaS programming skills.

—Thomas M. Siebel, CEO, C3 Energy,
founder and former CEO, Siebel Systems

3. Lessons from Ebooks
Given that we thought that we had a successful approach, we
believed the next logical step in making the ideas more widely
available was to write a textbook that captured our approach.

We were both excited about exploring the potential of self-
publishing electronic books, especially given that one of us has
extensive publishing experience with print books. We saw many
advantages that were particularly important for a book that would
be closely related to software products.

Figure 2. Survey results of software experience for former Berkeley students now in industry from two early offerings of the course.

 5

3.1 Iterative Development

With traditional print publishers, it can take nine months between
when the authors are done and when the book is published.
Ebooks allow us to release material within a week after we finish
it. Thus, we offered alpha, beta, and 2nd beta versions of the book
over 16 months to collect feedback and improve the material.

3.2 Frequent Editions

To amortize the costs of printing, a publisher will print thousands
at a time, so editions are typically spaced at least two to three
years apart. Not only will new releases of software tools appear
that could make the text incorrect, in the Agile world new tools
will appear would be extremely attractive to include. (We have
added a new tool every time we have taught the class.) Ebooks
enable new editions to be made as frequently as authors desire.
We expect to need a new edition every year, and during our alpha
and beta editions we pushed out updates every couple of months.

3.3 No Errata

Since an Ebook is electronic media, we can issue a new revision
with typos fixed as frequently as we wish and readers will get
their Ebooks automatically upgraded. This advantage is particu-
larly important when the book is tied to software tools, as it is
exceptionally frustrating if you do exactly what the book says and

it doesn’t work. So far, we have made about a dozen releases
across all editions.

3.4 Low Cost

As there are no middlemen when you self-publish, we were able
to keep the costs low ($10). This made the book affordable around
the world, which proved to be important for the MOOC.

3.5 Print on Demand Turns Ebooks into Print Books

We were pleasantly surprised to see that Ebooks have been paired
with print-on-demand (POD) publishing. Like Ebooks, there are
no warehouses full of POD books that must be sold before authors
can release a new edition. Thus, we were able to offer print books
for readers who prefer them while keeping iterative development
and frequent editions. POD books cost much more than Ebooks,
but as self-publishers we can offer it at roughly a third the price of
traditional print textbooks. We need to offer errata sheets for POD
books, but that is not too heavy a price to pay to support those
who prefer to read print books.

4. Lessons from MOOCs6
After we made a pact to write an electronic textbook, Daphne
Koller and Andrew Ng approached us in October 2011 to teach

6 This section is derived from Fox and Patterson [12] and Fox [13].

26%

37%

37%

37%

42%

47%

61%

61%

63%

63%

63%

63%

68%

68%

74%

84%

95%

42%

37%

37%

16%

42%

32%

39%

28%

11%

16%

26%

26%

32%

26%

21%

11%

5%

32%

26%

26%

47%

16%

21%

0%

11%

26%

21%

11%

11%

0%

5%

5%

5%

0%

68%

47%

63%

74%

61%

84%

37%

63%

37%

61%

63%

68%

26%

42%

37%

63%

95%

32%

32%

26%

21%

28%

11%

16%

11%

37%

39%

16%

26%

42%

42%

37%

26%

5%

0%

21%

11%

5%

11%

5%

47%

26%

26%

0%

21%

5%

32%

16%

26%

11%

0%

Velocity

Lo-fi UI mockups, storyboards

User stories

Pair programming

Practical cloud performance and security improvements

Design patterns

JavaScript

Working in a small team

Scrum team organization

TDD / BDD

Working with non-technical customers

Cloud performance, security

Ruby on Rails

Unit testing strategies (mocking...)

SaaS knowledge transferred elsewhere

Enhancing legacy code and Refactoring

Version control

Agree Neutral Disagree
In Industry In School

Figure 3. Ranked results from survey of CS169 alumni from Spring 2012 on whether course topics were important. On the left are
responses from alumni in industry and on the right from those who have not yet graduated. The former much more highly value
enhancing legacy code, reuse of SaaS knowledge, unit testing, Rails, scrum team organization, and JavaScript. The later more
highly value design patterns, practical security and performance, pair programming, user stories, and velocity.

 6

our course online via what we thought was Stanford University.
Thus, we taught UC Berkeley’s first MOOC in February 2012,
and it was one of the first courses offered by Cousera, the com-
pany Koller and Ng founded. Our university has since decided to
partner with EdX, so our courses are now called CS169.1x and
CS169.2x, Software as a Service Parts I & II, on EdX. (We have
two courses because we divided our course into two segments; see
Section 4.5.)

As with any disruptive technology, there are bound to be some
pitfalls along the way. How can instructors new to MOOCs suc-
cessfully navigate teaching a MOOC? Below are tips from our
experience in case others want to do a MOOC. All in all, it’s way
more work than “just” owning an on-campus course, but it’s also
tremendously rewarding.

4.1 Having A Rerun Plan Is Better Than Being Perfect

Leonardo da Vinci said, “Art is never finished, only abandoned.”
We found that while we could always find ways to improve our
material, we could always revise our lecture recordings later—in
Fall 2013 we are revising our MOOC lectures for the third time.
We balanced our desire to perfect the material with the need to
juggle all the other commitments most faculty must manage.
Another perspective is that we needed feedback from MOOC
students before we could improve it ourselves. Instead of obsess-
ing about trying to get it right the first time, we focused on sus-
tainability: Once we invested the enormous amount of work re-
quired to do a quality MOOC, we asked what resources will we
need to re-offer the MOOC between refreshes of the material?
We’ve managed to offer our MOOC two to three additional times
between refreshes using World TAs (see the next section).

4.2 Consider Delegating

Most Berkeley campus courses use student discussion forums, and
as conscientious instructors, we’re used to checking the forums
and posting answers to questions there frequently. But on-campus
course forums tend to follow a regular rhythm as students work
during the day, go to sleep (eventually), prepare for exams, or
enjoy a short break following an exam or during a holiday. The
cross-cultural, cross-time-zone reach of MOOCs obliterates this
rhythm, and we found it too time-consuming to keep up with the
forums. The challenge was exacerbated by the fact that most
MOOCs don’t have formal office hours or other means for stu-
dents to get direct help, so the forums are even more critical to the
student experience.

The first time we offered the course we recruited some of the
strongest undergraduates from the previous campus offering of the
course to serve as forum monitors. On subsequent offerings, we
recruited volunteer “World TAs” from among the highest-scoring
MOOC students, and retained an undergraduate working about 20
hours a week to organize the volunteers’ efforts as well as serving
as “Head TA.” This system has worked well: the world TAs get
some recognition, the course gets forum coverage by multilingual
students spanning all the time zones (in our most recent offering,
there was coverage nearly 24x7), and we get our lives back. We
still check in every week or two with our Head TA to see how
things are going, and often do 5-minute impromptu videos (Prof.
Jennifer Widom at Stanford called them ‘screenside chats’) on
topics in the news relevant to that week’s course content.

4.3 “On The Internet, Nobody Knows You’re A Dog”

The New Yorker magazine famously printed this caption in the
early nineties to draw attention to the anonymity available on the
Internet. Unfortunately, a small fraction of MOOC students take

advantage of anonymity to engage in antisocial or antagonistic
behavior on the forums, towards either their fellow students or the
course staff. We found that these perpetrators were cowards hid-
ing behind an anonymous throwaway email address. Up to a
certain point we could instruct our World TAs to shut down de-
structive threads, but if the behavior persists, we recommend
trying to have the students expelled from the course. We tried to
not let their behavior sour the experience for the vast majority of
students who are diligent and appreciative of our work!

4.4 Dry Run the Technology

With thousands of students, course technology has to work per-
fectly. We extended the EdX platform with sophisticated auto-
graders for our programming assignments. Critical to our success
was “dry running” new autograders and new assignments in our
campus classroom to fix both logic bugs in the autograders and
problems with the grading rubrics for new homeworks. We started
the MOOC three weeks after the campus course to give to us time
to repair assignments and autograders. Dry runs save a world of
pain.

4.5 Divide to Conquer

Rather than create a single 12-week MOOC in one fell swoop, we
first created a 6-week MOOC (CS169.1x), and offered it a few
times. The next semester we recorded the second 6 weeks of the
campus course to make CS169.2x, and then told the CS169.1x
alumni that part 2 was available. Instead of one long marathon, we
(and our families) were very glad we split the 12 weeks of MOOC
across two offerings to give us time to recover.

4.6 Evaluate the Data

The large enrollments of MOOCs offer us new and unprecedented
opportunities to improve our on-campus courses using inferential
statistics techniques that just don't work at smaller scales, and so
were previously available only to large-enrollment "high stakes"
exams such as the GRE or SAT.

For example, exploratory factor analysis lets us identify ques-
tions that test comparable concepts, giving instructors a way to
vary exam content [16]. Item response theory allows us to dis-
cover which questions are more difficult (in the statistical sense
that higher-performing students are more likely to get them right)
[17]. A/B testing gives us a controlled way to evaluate which
approaches have better effects on learning outcomes, just as high-
volume e-commerce sites evaluate which user experience results
in more purchases. None of these techniques works on class-
room-sized cohorts (say, 200 or fewer students), but we are apply-
ing all of them to our current MOOC.

Our sense at Berkeley is that MOOCs may well raise the bar
for acceptable teaching on campus, as well as improve the recog-
nition of good teaching, perhaps bringing the era of recycled
PowerPoint slides finally to a close.

4.7 If It Hurts, Don’t Do It

One criticism is that many aspects of traditional classes, such as
small-group discussions and face-to-face time with instructors, do
not work in the MOOC format.

This assertion is true, but it implicitly and incorrectly assumes
that replicating the classroom experience is the proper goal for an
online course. If that were an appropriate goal, then MOOCs
would indeed fail to meet it. However, as educators, a better
question for us to ask is this: What can be delivered effectively
through this medium in a way that helps our on-campus students,
and has the valuable side effect of helping the hundreds of thou-

 7

sands who won't have the privilege of attending our universities in
person?

For example, rather than asking whether automatic graders
(which, by the way, have been around since at least 1960 [18])
can replace individual instructor attention, we can ask: When can
they relieve teaching staff of drudgery, allowing scarce instructor
time to focus on higher-value interactions such as tutoring and
design reviews? Rather than worrying whether MOOC-based
social networking will replace face-to-face peer interactions, we
can ask and experimentally answer: Under what conditions and
with what types of material do online communities help foster
learning, and how can social networking technology help foster
both online and in-person community building? And learning
activities that don't appear to be “MOOCable”—discussion-based
learning, open-ended design projects, and so on—can just be
omitted from the MOOC but covered in the classroom setting, as
we've done in our software engineering course, whose MOOC
version lacks the on-campus course's open-ended design project.

Indeed, at universities on the quarter system, it’s common to
offer a two-quarter sequence in which the first quarter focuses on
well-circumscribed assignments and the second quarter focuses on
a design project, since a single quarter can’t cover both. The first
course clearly has value despite lacking a design project, and
could be offered as a MOOC. By analogy, MOOCs that don’t
offer “the same” experience as a complete residential course also
have value, and our job as educators is to make judgments about
where that value lies and how to combine it with the other educa-
tion modalities we offer our students. As a concrete example, our
MOOC does not offer team projects or pair programming, which
are important pieces of the Berkeley course. Nevertheless, many
of our MOOC students reported that our course was better than
anything available at the brick-and-mortar campuses to which
they had access.

5. Lessons from SPOCs
Our and others’ surveys of MOOC students have found that they
are not like our campus students. Three-fourths live outside the
North America (Table 3), but more importantly, roughly the same
fraction are working full time (Table 1) and already have college
degrees (Table 2).

Table 1. Primary Occupation
High school student 1%
Undergraduate student 8%
Graduate student 5%
Raising a family at home 1%
Full time job 70%
Part time job 6%
Unemployed 8%

Table 2. Highest level of education completed.
Less than high school degree 1%
High school degree or equivalent 8%
Some college but no degree 11%
Associate degree 3%
Baccalaureate degree 32%
Professional degree (JD, MD, ...) 11%
Graduate degree (MS, MA, PhD, ...) 35%

Thus, despite widespread fears of MOOCs undermining under-
graduate education, thus far they are primarily a threat to continu-
ing education programs.

MOOCs helped with our goals of educational technology
transfer by dramatically expanding our classroom both numeri-
cally and geographically—10,000 students from 113 countries
earned certificates from our MOOCs in 2012—but they have had
less affect on conventional undergraduate courses, which was our
original goal. The good news was that nearly 10% of the MOOC
students said they were instructors, so that meant the MOOCs
were helping us teach the teachers, in the hopes that they would
incorporate our material into their courses.

5.1 Defining SPOCs8

It seemed that there must be more we could do to share all the
technology we developed for the MOOC to make it easier for
instructors to teach software engineering in the way we devel-
oped. For example, in a recent pilot program at San José State
University in California, students in an analog circuits course used
MIT-authored MOOC lectures and homework assignments cre-
ated by Prof. Anant Agarwal. The students' in-classroom time was
spent working on lab and design problems with local faculty and
TAs.

The SJSU students in this SPOC (Small, Private Online
Course) scored 5 percentage points higher on the first exam and
10 points on the second exam than the previous cohort that had
used the traditional material. Even more strikingly, the proportion
of students receiving credit for the course (“C” or better grade)
increased from 59% to 91%. So educational quality arguably
increased, and costs were lowered by helping students graduate
more quickly, rather than by firing people. Productivity was
enhanced because the on-campus instructors shifted their time
from what they perceived as a lower-value activity—creating and
delivering lectures on content that hasn't changed much—to the
higher-value activity of working directly with students on the
material. This model takes advantage of important MOOC fea-
tures, including access to high-quality materials and rapid feed-
back to students via autograding, to maximize the leverage of the
scarce resource—instructor time.

5.2 SPOCs at Berkeley

A key feature of our software engineering course is four different
autograders for different types of software engineering as-
signments. These autograders were created by investing several
hundred engineer-hours in repurposing tools used by professional
programmers. Students not only get finer-grained feedback than
they’d get from human TAs, who can spend at most a few minutes
per assignment, but now have the opportunity to resubmit home-
works to improve on their previous score and increase mastery.
We plan for future releases to give feedback on coding style and
test completeness as well as simply code correctness.

A Figure 1 shows, the SPOC model has allowed us to increase
the enrollment of the course nearly fourfold while yielding higher
instructor and course ratings even though the fundamental ma-
terial covered has changed very little.

5.3 SPOCs Beyond Berkeley

As part of the beta-testing program for the book, we recruited
instructors with courses from four universities to try both the book
and the MOOC in Spring 2013:

8 This section is derived from Fox [13].

 8

• Binghamton University: 14-week elective software engineer-
ing course with team projects taken by sophomores and juni-
ors.

• Hawaii Pacific University: 15-week required systems
analysis/software engineering course for seniors with
individual student projects.

• University of Colorado, Colorado Springs: 16-week required
software engineering course with team projects for juniors and
seniors. Some of MOOC lectures were also used to supple-
ment a graduate class in Software Engineering.

• University of North Carolina, Charlotte: 15-week required
Software Engineering course with group projects for sopho-
mores and juniors.
These faculty were either unhappy with the current textbooks

or more interested in Agile than Plan-and-Document methodolo-
gies, as well as being interested in using materials that were
readily available to reduce their workloads. All faculty watched
the MOOC lectures to prepare for the course, and three of the four
used the exams. Two used the autograded assignments in their
courses; one had students watch the MOOC videos in addition to
lectures, and one “flipped the classroom,” where students are
watch the videos on their own instead of their instructor’s lec-
tures, and the classroom becomes more like a discussion section.

Here were some of the problems:
• Some students’ computers were too slow to run the VM.
• Some students were not familiar with Linux, which added to

their learning curve.
• Since thousands did the assignments, it was inevitable that

solutions would be easily available on the Internet.
• Autograders checked for correct “output,” but did not check

code style. Until we can get autograders to evaluate quality

metrics, as mentioned above, it would still be desirable for
humans to review the students’ code as well.

• Because of some of the logistical problems (with the auto-
graders, the programming environment, and so on) some stu-
dents took this as an excuse the cut back their efforts.

Here is what worked well:
• Auto-graders took the grading burden off the staff, while sim-

ultaneously reinforcing the notion of test-driven development.
• Video lectures were a highly efficient way to convey informa-

tion. They were dense with information, but students could
pause and review at any point.

• Students are excited being introduced to the latest technology
(Rails) and leading edge development methodologies (Agile).

• The course provided the better students challenges they were
not getting in their other classes.

• Students are impressed that they’re getting “world-class” in-
struction (via the video lectures) and being challenged by the
same curriculum given at a top-tier computer science program.

• Several students got jobs from material learned in this class.
While the start-up logistics were challenging, all were interested
in participating again in Fall 2013, and we are working to address
the shortcomings that they uncovered in the next course offering.

One improvement is to have the SPOC students participate in
the MOOC forum so that they could benefit from talking to stu-
dents at other schools. The beta-test faculty observed that many
students were having the same issues, particularly on the home-
work assignments. Having a larger community with whom to
discuss challenges and issues would help, especially when they
were first beginning with new languages and tools. With the
MOOC system, they could have a much larger range of responses
and perspectives than with just their small class group. A larger
discussion group might also give them a different perspective on

Table 3. The Top 50 countries of MOOC students of CS169.1x. The total number of countries was 113.
Rank Percent Country Running Total Rank Percent Country Running Total

1 19.7% United States 19.7% 26 0.6% Belarus 80.7%
2 10.4% Spain 30.1% 27 0.6% Egypt 81.3%
3 7.0% India 37.1% 28 0.6% Netherlands 81.9%
4 5.7% Russian Federation 42.8% 29 0.6% Sweden 82.5%
5 5.3% United Kingdom 48.1% 30 0.6% Algeria 83.1%
6 3.8% Brazil 51.9% 31 0.6% Costa Rica 83.7%
7 3.3% Canada 55.2% 32 0.6% Czech Republic 84.3%
8 2.6% Ukraine 57.8% 33 0.6% Philippines 84.9%
9 2.3% Germany 60.1% 34 0.5% Bulgaria 85.4%

10 2.2% Australia 62.3% 35 0.5% Indonesia 85.9%
11 2.1% Poland 64.4% 36 0.5% Peru 86.4%
12 1.9% France 66.3% 37 0.5% Austria 86.9%
13 1.8% Italy 68.1% 38 0.5% Ghana 87.4%
14 1.5% Portugal 69.6% 39 0.5% Ireland 87.9%
15 1.3% Pakistan 70.9% 40 0.5% Malaysia 88.4%
16 1.2% Argentina 72.1% 41 0.5% Singapore 88.9%
17 1.2% Greece 73.3% 42 0.4% Bolivia 89.3%
18 1.0% Hungary 74.3% 43 0.4% Denmark 89.7%
19 1.0% Mexico 75.3% 44 0.4% Israel 90.1%
20 1.0% Romania 76.3% 45 0.4% Serbia 90.5%
21 0.9% Colombia 77.2% 46 0.4% Turkey 90.9%
22 0.8% Nigeria 78.0% 47 0.3% Chile 91.2%
23 0.7% Switzerland 78.7% 48 0.3% Ethiopia 91.5%
24 0.7% Belgium 79.4% 49 0.3% Finland 91.8%
25 0.7% South Africa 80.1% 50 0.3% Kenya 92.1%

 9

software engineering. For example, students with industrial ex-
perience in one SPOC were appalled when hearing negative
comments from their classmates about writing tests, but the issue
didn’t arise until the student presentations at the end of the se-
mester. The MOOC Forum would have likely addressed the topic
earlier in the course. The MOOC forum could also help by lever-
aging the World TAs to answer questions. Having experienced
TAs is especially helpful given the new language, framework, and
tools, and such TAs can be hard to come by on any campus.

6. Conclusion
Cloud computing and the shift in the software industry towards
software as a service has led to highly-productive tools and tech-
niques that are a much better match to the classroom than earlier
software development methods. That is, not only has the future of
software been revolutionized, it has changed in a way that makes
it easier to teach.

UC Berkeley’s revised Software Engineering course leverages
this productivity to allow students to both enhance a legacy appli-
cation and to develop a new app that matches requirements of
non-technical customers. By experiencing whole software life
cycle repeatedly within a single college course, students actually
use the skills that industry has long encouraged and learn to ap-
preciate them. We believe it demonstrates one way to address the
many challenges of teaching software engineering.

This revision pleases many stakeholders:
• Faculty like it because students actually use what they hear in

lecture, even after graduation, and they experience how big CS
ideas genuinely improve productivity.

• Students like it because they get the pride of accomplishment
in shipping code that works and is used by people other than
their instructors, plus they get experience that can help land in-
ternships or jobs.

• Colleagues in industry like it because it addresses several of
their concerns.

Thus, the course is now heartening to faculty, popular with stu-
dents, and praised by industry. To transfer this educational tech-
nology to other institutions, we tried Ebooks and MOOCs.

Ebooks are a great match to a software course, as they simplify
making corrections and bringing out new editions to keep pace
with the rapidly evolving software tools. They also are a boon to
authors in that they allow us to do extensive class testing and let
us publish a book much more quickly. They also benefit readers
since Ebooks encourage self-publishing, which can lower prices.
Most importantly, our MOOC would likely have been too chal-
lenging for most students and instructors if not for the Ebook.

MOOCs represent a new technology opportunity whose poten-
tial pedagogical impact needs to be researched. We argue that
MOOCs themselves can yield valuable information because of
their scale, and that MOOC materials can be used in a blended
setting called SPOC or Small Private Online Course to supple-
ment the classroom experience.

Some have speculated that MOOCs will become the 21st cen-
tury textbook. Based on our experience, we think the new para-
digm will is more likely the combination of Ebooks and SPOCs,
as they are complimentary and synergistic. We believe you can
just pack more detailed and precise information in a 400-page
Ebook than you can in 12-weeks of lecture.

Both MOOCs and SPOCs are two design points in a wider
space in which experiments are possible. To be sure, many bad

experiments will be tried—some are probably already under-
way—and many worthy experiments will fail or have a different
outcome than desired. But if failed experiments were an obstacle
to doing world-changing research, we academics would probably
choose a different job.

Acknowledgments
In addition to all the Berkeley and MOOC students, we wish to
thank the faculty and students of our beta program: Richard Ilson
(UNCC), Samuel Joseph (HPU), Kristen Walcott-Justice (UCCS),
and Rose Williams (Binghamton).

References
[1] Waxer, C. “Software Engineer: 2012's Top Job,” InformationWeek,

May 15, 2012.
[2] Pressman, R. Software Engineering: A Practitioner’s Approach, 7th

Edition. McGraw Hill, 2010.
[3] Fox, A., & Patterson, D. “Crossing the software education chasm.”

Communications of the ACM, 55(5), 44-49, 2012.
[4] Fox, A., & Patterson, D. “Is the New Software Engineering Curricu-

lum Agile?” IEEE Software 30.5 (September/October 2013): 101-
104.

[5] Joint Task Force on Computing Curricula, “Computer Science
Curricula 2013, Ironman Draft (version 1.0),” ACM/IEEE CS, Feb.
2013, http://ai.stanford.edu/users/sahami/CS2013/.

[6] Estler, H.-C., et al., “Agile vs. Structured Distributed Software
Development: A Case Study,” Proc. 7th Int’l Conf. Global Software
Eng., IEEE 2012, pp. 11–20.

[7] Sommerville, I. Software Engineering, 9th ed., Addison-Wesley,
2010.

[8] Feng, J. & T. Sedano. "Comparing Extreme Programming and
Waterfall Project Results" Conference on Software Engineering Edu-
cation and Training 2011 (2011).

[9] Stella, L., S. Jarzabek, & B. Wadhwa, "A comparative study of
maintainability of web applications on J2EE, .NET and Ruby on
Rails," WSE 2008. 10th International Symposium on Web Site Evolu-
tion, pp.93-99, 3-4 Oct. 2008.

[10] http://en.wikipedia.org/wiki/Cucumber(software
[11] McCabe, T. "A complexity measure." Software Engineering, IEEE

Transactions on 4 (1976): 308-320.
[12] Fitzpatrick, J. "Applying the ABC metric to C, C++, and Java." C++

Report, June 1997.

[13] Patterson, D. & J. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. 5th Edition, Morgan Kaufmann
Publishers, 2014.

[14] Fox, A., & Patterson, D. “What We've Learned from Teaching
MOOCs.” https://www.edx.org/blog, May 8, 2013.

[15] Fox, A. “From MOOCs to SPOCs.” Communications of the ACM, to
appear.

[16] Lawley, D., Estimation of factor loadings by the method of maxi-
mum likelihood. Proc. Royal Soc. Edinburgh, 60A, 1940.

[17] Lord, F.M. Applications of item response theory to practical testing
problems. Mahwah, NJ: Erlbaum, 1980.

[18] Hollingsworth, J. Automatic graders for programming classes.
Communications of the ACM 3(10), Oct. 1960.

