
First, Do No Harm: A Curricular Approach to Exceptions
Introducing Refactoring to Promote Reliability

 Duane Buck
Otterbein University

Westerville, Ohio
614-802-1775

dbuck@otterbein.edu

ABSTRACT

This paper advocates the adoption of deferred error coding within

computer science curricula. It argues that it is both a sound

development strategy and aligns well pedagogically. By deferring

specific error handling, the student better appreciates its subtleties
and its importance as an independent topic, and will tend to create

more reliable applications. This paper includes other topics which

may increase community awareness of the issues and enhance

curricula: taxonomies of exceptions and exception handlers and

the relationships between them, subtle pitfalls of exception

handling, and factors influencing the selection of error reporting
patterns. Much of the discussion is language independent, but

specific attention is given to the Java checked exception

controversy, which inspired the curriculum approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Error Handling and Recovery

Keywords

Java, Checked Exception, Refactoring.

1. INTRODUCTION
In the joint ACM/IEEE computer science curriculum [1], the

‘Software Fundamentals/Cross-Layer Communications’ area

includes a conceptual discussion of ‘reliability’ and its

relationship with several other areas. Inexplicably, it does not
reference the ‘Software Engineering’ knowledge area that relies

heavily upon it and for which reliability is a critical topic. This

implies the need for increased community awareness of reliability

in relation to software engineering. The need for awareness

extends to industry, which will be evident below. This manuscript

provides an overview of issues surrounding reliability. The
broader goal here is to present a new curriculum approach which

focuses better on reliability and highlights its importance. To

facilitate further improvement of curricula, it also presents

background material and important related topics which, in

appropriate courses, may be a useful supplement to textbooks.

 Section 1 presents the motivations. Section 2 discusses

exceptions and introduces the Java checked exception controversy

which inspired the new curriculum approach. Section 3

introduces taxonomies of exceptions and exception handlers, and

relates the two. Section 4 discusses error reporting patterns in

Java. It includes the description of a hybrid approach found in

some newer Java library classes. Section 5 examines exception

type inconsistencies in several Java library classes. Section 6

presents the “deferred error coding” curriculum approach where

the application’s direct-path is initially debugged before its error

handling is refactored. Its implementation using Java is also

addressed there, together with common exception handling pitfalls

to be avoided. Section 7 provides a different point of view as it

examines the design of error reporting within an API. Section 8

presents the conclusion where it is argued that the checked

exception controversy may be resolved. It then presents a

minimal curricular change that could by itself improve checked

exception handling, based on “First, do no harm.” Section 9
provides the references cited.

2. EXCEPTIONS
Reliability goes hand-in-hand with properly handing exceptions.

The term exception is used broadly here to refer to a failed

request. Although a failed request may sometimes be reported by

the hardware or virtual machine (e.g., a null pointer error), an

application programming interface (API) often needs to report
exceptions to its client. A “direct-path” of an application is

defined here as a thread of execution that results in providing one

of the application’s functions, in the absence of exceptions.

Exceptions fall into one of two broad categories, expected and
unexpected. Expected exceptions represent circumstances that are

unavoidable and should be anticipated, while unexpected

exceptions typically indicate program bugs, which should not

occur in a production application. Expected exceptions require

specific alternative processing, which depends on their

foreseeability and a cost/benefit analysis. An unexpected
exception also requires alternative processing, but the response is

limited: an appropriate shutdown that supports debugging.

In older languages, such as C, exceptions were indicated by API

request return codes, and a great deal of the source code dealt with
checking the codes, which was error prone and hampered

reliability. There was a major advance when newer languages,

such as C++, introduced modern exception handling. [4] With this

facility, it was possible to code a direct-path without explicitly

coding an action after each call to the API. For unexpected errors,

no coding was required, period. This was possible because
unexpected exceptions were addressed by a context appropriate

default handler (sometimes called the uncaught exception

handler).1 Therefore, the programmer explicitly handled only

expected exceptions, providing specific alternative processing.

This situation was ideal except for the problem that it was up to

API designers to document expected exceptions, and up to the

1 The use of a default handler is described by Longshaw and

Woods [7, p. 40] as the “Big Outer Try Block Pattern.”

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SPLASH '13, Oct 26-31 2013, Indianapolis, IN, USA

programmer to read the documentation and implement the specific

alternative processing required in the context of the application.

Otherwise, unless the need to handle an exception was uncovered

during debugging, a system could go into production missing a
handler; if the exception occurred, it would be treated as a bug.

The designers of Java attempted to further improve reliability by

supporting a second type of exception for problems arising

“outside of the immediate control of the program” (equivalent to

expected exceptions, as defined here). When using checked

exceptions, the lack of an explicit exception handler is statically
detected by the Java compiler. Paradoxically, because the

designers of Java did not trust that programmers would heed a

warning regarding a missing handler, they created an environment

that tended to result in applications having more serious flaws

than those addressed by checked exceptions.2 [1, 2, 10]

There has been a long standing controversy regarding Java

checked exceptions [3, 6, and 11]. Two main issues are reported:

(1) “catch or specify” is not always possible3 and (2) for some

applications “catch or specify” is unnecessary or even

undesirable. These two issues are touched on only briefly below.
However, this manuscript is the first to report a third issue, which

is the controversy’s unrecognized raison d'être: “catch or specify”

creates a siren song inviting the practice of coding specific

exception handlers simultaneously with coding a direct-path. In

this case, the error handling code: (1) potentially masks bugs

during debugging, (2) adds to the volume of code initially being
debugged, (3) often requires a design scope larger than the

method being coded, (4) competes for attention with coding the

(usually more interesting) direct-path, (5) requires maintenance

because the code-base may not yet have stabilized, (6) is

developed without the insights gained from first-hand experience

with the exceptions, and (7) requires a specialized skill set which
the implementer of the direct-path may not possess. This

manuscript is the first to identify these issues.4 They point

strongly to the practice being dysfunctional. The issue may have

not been recognized because the natural tendency before Java was

to develop the direct-path before the edge-cases. [11]

Because of the issues encountered when developing specific error

handlers prior to initial debugging, as well as for pedagogical

concerns, this manuscript proposes a two phase development

strategy: deferred error coding.5 This emerges organically in most

languages, but requires an explicit coding technique when using
Java. But, regardless of the language, the pedagogy is important.

3. EXCEPTION AND HANDLER TYPES
A taxonomy may be formed by noting that an exception is

triggered by one of four situations: (1) an undetected program

bug, (2) a system error (e.g., out-of-memory), (3) an environment

fault (e.g., a network outage), or (4) an issue related to the

2 That checked exceptions protect the system from crashing due to

an uncaught exception is a myth that has emerged to justify

them. It has a basis in reality; early software environments did

crash for that reason. Footnote 18 debunks this myth as regards
Java.

3 E.g., when using a framework without source code.

4 The author delivered an invited presentation at JavaOne 2012,
San Francisco, discussing this and other topics explored below.

5 Haase’s “Unhandled Exception” pattern [5, p. 105] is similar to
the deferred error coding recommended here.

application domain (e.g., incorrect input). The order here is from

least likely to most likely to be “expected” in the sense that the

potential error is understood well enough that specific alternative

processing could be developed. The first two situations are more
generally classified as unexpected, and the latter two expected.

It is beyond the scope of the present paper to discuss exception

handling comprehensively. The paper by Chen et al. [2] has an

excellent discussion of refactoring handlers, upon which this

paper draws. The broad issues are discussed here. There are three
major categories in the taxonomy of exception handlers:

(1) A message/terminate handler is provided by the uncaught
exception handler, which assumes the exception is due to a

bug. It may be customized for the execution environment as

discussed earlier. Occasionally, a message/terminate handler

is specifically coded for an unrecoverable situation not

resulting from a program bug. In this case, the message would

be tailored to communicate with the end-user.

(2) A message/rollback handler is used in the case where a single

request could not be completed, but the system may be

capable of completing other requests. The request is often an
action requested from a user-interface. The handler informs

the user, and then needs to transfer control back to the “event

loop” so the user can make additional requests. The difficulty

with this type of handler is that it must ensure that the partially

completed execution of a request does not invalidate further

execution of the application. Borrowing from database
terminology, the transaction must be rolled back.

(3) A retry/fallback handler first tries to complete the function of

the method invocation, which may involve attempting the
same action again and/or executing an alternate

implementation. Usually after some number of failed tries, it

falls back to a message/rollback or message/terminate handler,

depending on the context and the severity of the issue.

Table 1 shows for each exception type the types of handlers that

may be employed. The shaded cells represent unusual handlers
for that particular type of exception. Exceptions due to

environmental faults are the only ones that do not have a usual

handler type. For those, the choice of handler should be based on

a cost and benefit analysis within the particular context. The

retry/fallback provides the best user experience, but also has the

highest development cost. If retry/fallback is not feasible or not
cost justified, then a message/rollback handler should be

considered if providing a subset of “commands” is possible, as

this provides the next best user experience. Otherwise, the least

desirable, but also least expensive, message/terminate handler is

indicated.

Specific handler types are indicated for bugs, system errors, and

application errors. Bugs are corrected rather than specifically

handled, and those that remain are usually handled by a

message/abort handler, usually the uncaught exception handler.6

System errors typically indicate that the system is unstable, and
therefore they are also usually handled with a message/terminate

handler, which may again be the uncaught exception handler.

This is a reasonable choice because system errors are sometimes

6 When debugging, a default handler usually supplies debugging

information and terminates the activity in progress. Because

this behavior is inappropriate for an end user, a custom default

handler is usually installed when running in production.

triggered by bugs. A message/rollback handler is usually

appropriate for application domain exceptions.

Table 1: Possible handling of the four types of exceptions

 Type of
Handler ►

message/
terminate

message/
rollback

retry/
fallback

U
n

ex
p

ec
te

d
 E

xc
ep

ti
o

n
 T

yp
es

 program
bug

Report
debugging
information.
Inform user.

Report
debugging
information.
Inform user.

Report
debugging
information.
Use alternate
implementation.

system
error

Report
debugging
information,
and inform IT
and the user.

Continued execution is risky.
Occasionally, system errors
(e.g., out-of-memory), may be
understood well enough to
attempt one of these handlers.

E
xp

ec
te

d
 E

xc
ep

ti
o

n
 T

yp
es

 environment
fault

Report to IT.
Inform user.

Report to IT.
Inform user
of the issue;
continue w/o
repair.

Attempt retries
and/or alternate
implementation;
then terminate
or rollback.

application
domain
error

Inform user. Inform user
and allow
them to try
again.

N/A, same
input will get
same result.

4. JAVA EXPECTED ERROR REPORTING

4.1 Return Codes vs. Checked Exceptions
After he extensively reviewed the literature of error handling and

recovery, Tellefsen [10, p. 50] concluded that “return codes are

useful for returning error information, simply because they are

easier to use, and they would probably be used even if they were

disallowed by project guidelines.” It is therefore not surprising

that return codes remain in use today in the Java libraries to report

expected errors, even though return codes are problematic.

A return code often takes the form of a single return value being
multiplexed so it is either a result or a status indicator.7 The Java

library Map class’ get() method is an example of this. It

returns an object reference in the normal case, otherwise it returns

null. An application programmer may find return codes

beneficial because the if/else construct is familiar and easy to

code. However, they need to be cognizant of the danger of not
checking a return code and losing the source of an error. This is

more likely to happen with a multiplexed return code, because it is

tempting to code the function inside of another expression,

assuming no error will occur. Fortunately, a null reference or

negative index value frequently results in a quick exception.

An interesting juxtaposition occurs here. The Java library makes

use of return codes for some expected errors even though failure

to check return codes is a major issue affecting debugging and

reliability. They do this seemingly because of the difficulty

programmers have coding exception handlers. Meanwhile, Java

forces coding explicit handling of checked exceptions before

compilation and debugging can commence. For expediency,

programmers tend to take shortcuts to a compilation: they ignore

7 Alternatively, an API may provide a separate method to access

the return code (e.g., Scanner; see Footnote 17 below).

return codes and insert the minimal code required to ignore

checked exceptions. The result is that execution continues for

both error reporting mechanisms, complicating debugging, and

potentially leading to unreliable applications.

4.2 Hybrid Error Reporting
For expected errors, when external events cannot asynchronously
alter the validity of a request, an API may supply a method to

check the validity of a request before it is made. This provides the

best qualities of return codes and unchecked exceptions without

their drawbacks. Some of the newer Java APIs (e.g., Scanner)

use validity requests. An API documents an expected error, not

with a checked exception, but with a method to precheck validity.
The programmer uses the familiar if/else construct to code the

alternative action, as with return codes. If the programmer fails to

do the validity precheck, an exception signaling the expected

situation will (hopefully) occur during testing. This gives a

meaningful stack-trace pointing to the problem. For some APIs,

the programmer may choose to catch the exception instead of
using the query method, when that makes error coding easier.

5. JAVA EXCEPTION CLASSIFICATIONS
Although unanticipated issues arose with the forced early

implementation of checked exception handlers, one might expect

that the anticipated benefit, knowing that the correct exceptions
have specific handlers, is enjoyed. However, the classifications of

exceptions have proven idiosyncratic and guidelines have shifted.

In the Java library, some exceptions, which for all practical

purposes are expected, are confusingly classified as unchecked,
and vice-versa. For example, consider the familiar library

function int Integer.parseInt (String s) which

converts the input s to an int. The origin of the input is almost

certainly from outside of the program (probably an end-user), so it

would be expected to occasionally be incorrect. However,

parseInt() throws an unchecked exception when given
invalid input.8 A misclassification of this kind, where an expected

exception is classified as unchecked, defeats the purpose for

which checked exceptions were designed.

The opposite problem is also troublesome because checked
exceptions may unnecessarily complicate the use of an interface.

The guideline published in the quasi-official Java Tutorial

regarding the use of checked exceptions has shifted from virtually

mandating their use when not reporting bugs, [3] to using them

when a client can “reasonably be expected to recover,” which

better focuses on their purpose. [6] This was apparently a
workaround addressing the “unnecessary complication” argument.

What is worse than the preceding issues is that expected and

unexpected situations are sometimes merged into a single checked

exception class when reported. This is the case with
java.io.IOException which is thrown by the read()

methods of several IO classes. If an expected error occurs (like

losing the connection to a network resource, which is outside the

control of the programmer), a checked exception is properly

thrown. However, IOException is also thrown if the IO object

is closed before the read() method is invoked. The latter is
inexplicable because clearly such a situation should be reported

8 If the Integer class API provided a function to check a
String for valid integer syntax, it would be correct to consider

passing an invalid string to parseInt() unexpected. This

would follow the hybrid error reporting pattern given above.

by a subtype of RuntimeException indicating a program bug

(the canonical choice would be IllegalStateException in

the java.lang package). The unfortunate result is that parsing

the exception’s message is the only alternative available to
determine the cause of that exception.9

Some Java library APIs (e.g., java.sql) and third party APIs

classify all of their declared exceptions as checked, even when

they are due to programming bugs, although this goes against the
published guideline. This misclassification may be due to esthetic

concerns of the API’s designers, who want to have all of their

exceptions extend a single API defined supertype, which makes it

impossible for some of the exceptions to be checked and some

unchecked.10 A similar esthetic may also be behind the unusual

choice of using IOException to report a bug.

6. CURRICULUM IMPLICATIONS
Error coding is an important but complex topic that deserves

attention in the curriculum. Having the students first learn direct-

path implementation without the complexity of error coding is
important to avoid cognitive overload, in addition to its other

advantages. This raises the question of when refactoring should be

studied. Examining textbooks reveals little or no early coverage

when using other languages. It may be advantageous to move the

topic to a more advanced course, perhaps as late as software

engineering, or divide the topics across multiple courses.

When introducing deferred error coding, the motivations

presented in Section 2 may be a useful topic. When teaching

refactoring, the taxonomies and their relationships examined in

Table 1 would be a resource, as would be the dysfunctional

examples and their alternatives in Subsection 6.2. During later

courses, the API factors to be discussed in Section 7 may also be a

topic of interest. The remainder of this section examines the two
phases of the deferred error coding pedagogy advocated here.

6.1 Direct-path With Fail-fast Handlers
As previously discussed, when using languages other than Java,

deferred error coding is organic, and curricula have implicitly

embraced it (at least for exceptions). When using Java in a

curriculum, a technique for implementing deferred error coding
must be taught. Although the technique recommended here adds

more verbiage than desirable, it imposes the least cognitive load

among the available choices. The student is instructed to insert

the following “boilerplate” template around any method

invocation that throws a checked exception:

 try {

 aMethodThrowingACheckedException();

 } catch (ACheckedException ex)

 {throw new RuntimeException(ex);}

This handler will trigger the uncaught exception handler which

should be a context appropriate message/terminate handler.11 A

program with this boilerplate handler has a valid form of error

handling, although it might provide a suboptimal user experience.

9 If a checked exception is irrecoverable, it should be wrapped in a

RuntimeException and rethrown. See Subsection 5.2.3.
10 Anecdotally, some believe the myth described in Footnote 2.
11 In Java, a custom default handler must extend the base class
UncaughtExceptionHandler and be set as the default

handler by invoking the Thread class’ method

setUncaughtExceptionHandler().

The deferral of specific error coding until refactoring also applies

to the other API error reporting patterns: conventional exceptions,

hybrid reporting using validity query methods, and return codes.

For return codes, the fail-fast behavior required for deferred error
coding is provided by inserting code to throw a runtime exception

in the event of an error.12 Deferred error coding for these patterns

has the same advantages as it has for checked exceptions: it

allows the direct-path to be coded expediently, yields good

debugging information, and provides a foundation for the

refactoring that follows.13

There are several advantages to using the deferred specific error

coding approach. Then starting out, the student is taught an

expedient approach that is not dysfunctional. Early on the student

will see in which contexts things can go wrong and trigger
exceptions. The student also comes to understand that a program

without specific error handling, for at least domain level

exceptions (user errors), is not “finished.”14 Later the student will

learn how to refactor applications to create robust solutions.

6.2 Refactoring Error Handling
By refactoring error handling, students are not forced to divide

their attention between the direct-path, which is their central

concern initially, and error handling. Advanced assignments will

require students to refactor the error coding. This may involve

both studying the API and testing to determine which exceptions
are recoverable in the context of the application. For those, the

student will code a specific alternative action. Each location

where boilerplate code throws a RuntimeException needs to

be studied to determine if it should to be refactored into a more

specific handler. As discussed earlier, testing is also required

because some methods throw misclassified unchecked exceptions

that should be caught and vice-versa. Once the type of handler is
selected, the student may need to include multiple lines of code in

a try/catch block, possibly need to use a throws clause to

send an exception to the invoking method, and might have the

need for try blocks with a finally clauses to release

resources15 when a non-terminating handler is invoked.

It is beyond the scope of this manuscript to cover implementation

of error handling in detail. Instead, some practices whose

dysfunctionality may not be apparent will be enumerated. The

examples are drawn from textbooks, the standard Java library, and

an Eclipse code template, and probably arose under the influence
of checked exceptions. Each example is immediately followed by

an alternative that addresses the problem cited. Unfortunately the

authors, who will remain anonymous, appear to be oblivious to

the issues raised.

12 A returned error status becomes a RuntimeException:

 <result> = aRequestWithReturnCode();

 if (<result-indicates-failure>)

 throw new RuntimeException(<message>);

13 When all errors result in a runtime exception (known as failing-

fast), a code base has reached the first goal (G1) of the error

handling refactoring methodology presented by Chen, et al. [2]
14 A mathematics colleague points out that for his purposes it is

finished because an exception handler might mask an error and

cause erroneous output, which is far more troublesome than

rerunning. This is probably true of many one-off programs.
15 Every method with a throws clause is a candidate for this.

6.2.1 Ignored Checked Exception
The following ignores a checked exception that is unexpected:

 try {

 Thread.getCurrentThread().sleep(10);

 } catch (InterruptedException e) {}

In this case, ignoring the exception seems innocuous. Unless the

application uses cooperating threads, and invokes the current

thread's interrupt() method, theoretically the exception will

not occur; however, if it does, it would be indicative of a bug.

However, this code ignores it and proceeds. Although ignoring an

expected exception might be a reasonable fix-up, one should never
ignore an exception that is unexpected; Müller and Simmons

[8, Subsections 2.1 and 4.2] provide an extended discussion.

Alternative: To handle an unexpected checked exception, simply

retain the boilerplate code discussed above. To document
refactoring is completed, RuntimeException may be replaced

by an application subtype, e.g., UnexpectedException:

 try {

 Thread.getCurrentThread().sleep(10);

 } catch (InterruptedException e)

 {throw new UnexpectedException (e);}

If the exception occurs, it will be properly reported as a bug.

6.2.2 Noting and Ignoring a Checked Exception
Examine the following code that is creating an InputStream:

 try {

 is=new FileInputStream(f);

 } catch (FileNotFoundException e)

 {e.printStackTrace();}

Here the code reports the error, but does so in a way that is

insensitive to the user currently executing the program (perhaps it

is the end-user). Printing to the console is also problematic

because applications are typically deployed without console
windows. The bigger problem here is that the program keeps

running and its results are unpredictable. Unfortunately, this is

similar to Eclipse’s default code template that assists coding the

invocation of methods that throw checked exceptions.

Alternative: The standard boilerplate code is far superior to the

above. However, because this error is expected (the existence of

the file is not under the control of the programmer), a

message/rollback handler is probably indicated when refactoring.

6.2.3 Fix-up of an Exception Triggered by a Bug
This code reading InputStream is has subtle issue:

 try {

 b=is.read();

 } catch (IOException e) {b=0;}

The error handler performs a simple fix-up to an environment

fault, using a default value and continuing. But, as has been

discussed, the issue is that unexpected and expected situations

have been merged into one exception class by the API designer. It

might signal an IO error, which this handler addresses, but another
possible cause of the exception is that the InputStream has

been closed, a program bug. In that case, the application will

continue execution and make it difficult to locate the error. This

mixing is common in some class libraries (e.g., java.sql).

Alternative: The boilerplate handler should be augmented to

examine the exception, verify it was not caused by a program bug,

and if so, execute specific handling. Otherwise, it should throw a

RuntimeException to report the bug.

6.2.4 Supertype Exception in throws Clause
The elided method given below throws to the invoking method a

checked exception which is a supertype of other exceptions:

 void fun1() throws IOException

 {…

 b=is.read();

 …}

This code is dysfunctional because the throws clause throws all

subtypes of IOException. As a result, a programmer opening

a file within the same method will not be required by the compiler

to handle the FileNotFoundException, for instance.

Alternative: A supertype checked exception should be caught

locally. If it cannot be dealt with locally, it should be wrapped in

an application defined exception and thrown:

 void fun1() throws IOExceptionWrapper

 {…
 try {

 b=is.read();

 } catch (IOException ex)

 {throw new

 IOExceptionWrapper (ex);}

 …}
The above throws clause names the class wrapping the

supertype exception, so the invoking method will have to “Catch

or Specify” IOExceptionWrapper in this case. Now, when a
programmer opens a file within the method, they will be required

to catch or throw FileNotFoundException.

Fortunately, supertype exceptions are infrequently thrown in

library APIs. The bigger lesson is that generally, only specific
subtypes should be caught, or appear in a throws clause; if a

supertype is specified, subtypes will not require specific handling.

7. API DESIGN IMPLICATIONS
The underlying problem to be solved in an API is how to give

feedback to the application regarding an action the application
requests or plans to request. As discussed earlier, some form of

return code may always be with us even though using return codes

is problematic. The use of return codes is justified for especially

common situations, like a failure searching for a substring.

Although enforcing specific error coding at compile time through

checked exceptions may appear beneficial, as has been discussed

extensively, doing so tends to encourage dysfunctional error

coding and should be used with caution. Additional concerns

have also been raised. Robillard and Murphy [9, p. 2] discuss

how coding using the checked exception mechanism tends to lead
to “complex and spaghetti like exception structures” (e.g., the

tunneling scenario to be discussed in Section 8). Another concern

with checked exceptions is noted by Haase at the end of his

summary: “The benefits of checked exceptions can be

summarized by saying that their use provides documentation and

ensures that exceptions are handled. There is however a downside
to this, namely that checked exceptions reduce flexibility.”

[5, p. 94] For example, when an application being modified needs

to invoke a method that throws a checked exception, it is not

easily accomplished. Either the call hierarchy must be modified

up to the point the exception is handled, or it must be tunneled.

The above concerns about checked exceptions are serious and

recognized by the wider software community. The designers of

the post Java language C# chose not to include checked

exceptions [11], and according to Chen et al. [2, p. 335]

“unchecked exceptions are preferred in several well-known open

source projects written in Java, including the Eclipse SWT project

and the Spring Framework.”

A better alternative to both checked exceptions and return codes

may be to provide hybrid error reporting as discussed in

Subsection 4.2. Using a separate query method, an application

can evaluate a request’s validity. If the request is valid, the
application can make the request and the proper outcome is

guaranteed. If the programmer fails to make the check, and an

invalid request is made, a runtime exception will be thrown,

reporting the program bug.16 Using a validity query for each type

of request, programmers employ the if/else construct, with

which they have vast experience. This makes the query style
easier to code and read for many application programmers. The

designers of the Scanner class provided hybrid error reporting

with query methods.17 Because that class is a recent addition to

the Java library, its designers may have called upon experience to

point to that solution.

8. CONCLUSION
Java checked exceptions, although in theory beneficial for

reporting expected exceptions, have created a problem in the

curriculum. They distract the student from the central function of

their project, and force them to reason about constructs they may
not yet understand. The recommendation made here is to have

students follow the two phases of “deferred error coding.” The

first phase implements the direct-path and keeps the code base

behaving in a predictable, fail-fast, manner. As the student gains

more insight, he or she will then enter the second phase,

refactoring the error handling.

The issues raised regarding checked exceptions are almost

exclusively the result of the classification of failure to “catch or

specify” as an error. If the compiler instead generated a warning,

an application could be debugged without explicit error handling,

and during refactoring the warnings could be used to locate
checked exceptions not handled. Issuing warnings also solves the

other major issue: the need to throw checked exceptions across

foreign software boundaries. Rather than wrapping a checked

exception inside a runtime exception and tunneling it across the

boundary, one would expect a warning. A warning would also be

issued for the method handling the exception while invoking the
foreign software. This would verify that the exception is caught.

Ultimately, one might add annotations to suppress the warnings,

similarly to when generics are not statically verifiable. Also,

because checked exceptions will no longer impose an unnecessary

16 The programmer might catch the exception instead of using a
query method if it simplified the implementation.

17 It is interesting that Scanner has a little known “return code

retrieval” method, ioException(), which returns the

IOException last thrown by the Scanner's underlying
Readable, or null if no such exception exists. It apparently

was added to relieve the client from having to deal with the

troublesome IOException. The programmer should check

that the method returns null before executing a user action.

Otherwise, because an IOException is treated as end-of-file,

an unintended action may result. Many users may unknowingly
use applications that have this bug. Scanner’s handling of the

checked exception provides a good case study of how checked

exceptions, paradoxically, may negatively impact reliability.

burden, the guideline for an exception being checked can return to

its being “outside of the immediate control of the program.” This

is simpler than the work-around guideline, which is that the

exception be checked if the client may “reasonably be expected to
recover,” because the latter requires an API designer to make

assumptions. Technically, it is apparent that failure to “catch or

specify,” could easily be designated a warning,18 which would

resolve the major issues that have arisen in the controversy.

Even if the central recommendation of this manuscript – deferral

of specific error coding until later in the curriculum – is not

adopted, a significant benefit will follow from discussing with

students the dangers involved when handling checked exceptions.

The Hippocratic Oath includes “First, do no harm,” which is good

advice in this context. The student should be instructed to first
code using the standard boilerplate template presented in

Subsection 6.1 when they encounter a checked exception which

they: (1) think will not occur, or (2) are unsure how to handle.

This will take little class time and will reduce the level of

dysfunctional error handling during debugging, which may help

provide the additional insight the student needs handle the error.

9. REFERENCES
[1] ACM/IEEE-CS Joint Task Force on Computing Curricula.

Computer Science Curricula 2013, Ironman Draft (v 1.0).

[2] Chen, C., Cheng, Y. C., Hsieh, C., and Wu, I. Exception

handling refactorings: Directed by goals and driven by bug

fixing. Journal of Systems and Software 82:333–345, 2009

[3] Goetz, B. “Java theory and practice: The exceptions debate”
http://www.ibm.com/developerworks/java/library/j-jtp05254,

May 2004.

[4] Goodenough, J. B. Exception handling: issues and a

proposed notation. Communications of the ACM,
18(12):683–696, 1975.

[5] Haase, A. Java idioms: exception handling. In Proc. of the

EuroPLoP’2002.

[6] The Java Tutorial. “Unchecked Exceptions — The

Controversy.” http://docs.oracle.com/javase/tutorial/essential

/exceptions/runtime.html, accessed September 2012.

[7] Longshaw, A. and Woods, E. Patterns for the generation,

handling and management of errors. In Proc. of the

EuroPLoP’2004.

[8] Müller, A. and Simmons, G. Exception Handling: Common
Problems and Best Practice with Java 1.4. In Proc. of

NetObject Days ‘02, 2002.

[9] Robillard, M. P. and Murphy, C. Designing robust Java

programs with exceptions. ACM SIGSOFT Software
Engineering Notes, 25(6): 2-10, November 2000.

[10] Tellefsen, C. An Examination of Issues with Exception

Handling Mechanisms. Master’s thesis, Norwegian

University of Science and Technology, 2007.

[11] Venners, B. with Eckel, B. “The Trouble with Checked

Exceptions” (A Conversation with Anders Hejlsberg, Part II)

http://www.artima.com/intv/handcuffs.html, 2003.

18 To confirm this, note that when generics are used, in some cases

the compiler is unable to detect the failure to “catch or specify”

a checked exception. Therefore, unchecked exceptions must

already have runtime support in Java, even if they are not

explicitly caught. Also see Footnote 2 for a myth “explaining”

why checked exceptions must be explicitly handled.

