
banner above paper title

Teaching A For-Credit CS1 Course as a MOOC

Cay S. Horstmann
San Jose State University
Cay.Horstmann@sjsu.edu

Abstract
In 2013, San Jose State University established a partnership with
Udacity, a provider of massive open online courses. SJSU faculty
and Udacity jointly convert college courses into the Udacity format
and offer them both as for-credit courses and as free courses for
the general public. In this article, I report on the challenges of
authoring and delivering an introductory computer science course
in this fashion, and conclude with recommendations for course
design and vendor management.

Categories and Subject Descriptors K3.2 [Computers and Edu-
cation]: Computer and Information Science Education

General Terms Human Factors, Design, Economics.

Keywords Massive open online courses, MOOC, CS1

1. Introduction
Massive open online courses (MOOCs), open-access courses that
are offered to very large groups of students over the internet, have
emerged about five years ago, and soon afterwards speculation
began how they will transform the university and perhaps make it
irrelevant. In 2013, San Jose State University (SJSU) and Udacity,
a major MOOC provider, entered into an agreement to jointly
develop and offer for-credit courses [1]. Three courses were offered
in Spring 2013.

SJSU gave two principal reasons for the initiative: Lowering
the cost of education, and increasing engagement with students.
Registration for the MOOC version of a course is $150, and no
textbooks are required. In contrast, a full-time in-state student pays
about $550 for a three-credit course. The initial set of courses
consisted of two remedial mathematics courses and a statistics
course that traditionally had high dropout rates. SJSU expressed
the hope that freshly desiged and professionally delivered online
courses would be more attractive to students and increase success
rates.

The computer science department decided to offer our introduc-
tory computer science course (which I will call CS1 in this paper)
through Udacity. The course ran for the first time in Summer 2013.
Like the other SJSU/Udacity courses, it does not replace the tra-
ditional course but offers students an alternative. Since our CS1
course regularly fills up and we have to turn away students, we
welcomed the additional capacity that the MOOC course would

[Copyright notice will appear here once ’preprint’ option is removed.]

provide. We hoped that the environment would enable us to offer
more drill and practice than we normally do. Finally, we wanted
to enable community colleges to teach our curriculum, using the
free MOOC for student labs or a flipped classroom, so that transfer
students can be better integrated into our program.

2. Our CS1 Course
We teach CS1 in Java, using an objects-early approach, covering
the first 10 chapters of Big Java [2]. The course syllabus is essen-
tially identical with that of the AP Computer Science A course [3].
About 2/3 of the students are currently CS majors or intend to join
our program.

The objects-early approach is not without its distractors [4], but
it has worked well for us. In particular, since the approach is new
to all students, whether or not they had prior programming experi-
ence, it levels the playing field in the first few weeks. We use the
BlueJ environment [5], and we introduce the object workbench as
the primary tool for interacting with objects in the first three weeks,
minimizing the dreadedpublic static void main method.

Our CS1 has a high failure rate (33.4% on average in the last six
semesters), and instructors of the follow-on course complained that
many passing students lacked essential programming skills. The
latter was somewhat remedied in the last two years by changing
the nature of the programming assignments. We used to assign four
to six complex multi-week assignments, and changed to simpler
weekly assignments. To handle the added grading volume, we
use an autograder. We have human graders, but they focus on
programming style, not correctness. The autograder enabled us to
assign a draft version for each assignment, which asks for some
partial work on the assignment, and is due four days before the final
version. That draft, not surprisingly, yields many questions the day
after its due date, when students are surprised by the challenges of
the assignment. Having this surprise 12 times during the semester,
with time to recover, seems to have been effective in increasing
programming skills. But it dit not lower the failure rate.

We also have a very active discussion group. In Fall 2012, with
about 150 students, our Piazza group had over 25,000 contribu-
tions. About half are answers to in-class clicker questions, but there
is a very substantial discussion of the programming assignments.
There is a small grade reward for participation. We also have a
mandatory closed lab in which students become familiar with the
development environment and the debugger, and where they prac-
tice developing algorithms and programs.

Udacity offers another CS1 course [8], but we felt that it was
not comparable to our course. Not only does it use Python, but it is
centered around the activity of building a search engine, and fails
to cover a number of subjects from our syllabus.

3. MOOC Course Design
It was our intent to have the Udacity course mirror all the features
of the regular course. At first glance, this seemed easy. The pub-

short description of paper 1 2013/8/28

lisher provided a good set of slides, and since I had been using
clicker questions in class, I thought that I could just replicate what
I do in class: lecture for 15 minutes, ask a question or two, discuss
the answers, and lecture again. Another MOOC provider, Coursera,
offers quite a few courses in just that format, recording the white-
board and showing a small inset of the lecturer’s head, interrupted
by an occasional multiple-choice question.

Udacity has a very different format. Each video segment is a
minute or two long, and is followed by a question. The question can
be a programming question, which is something that I had always
wanted to do. (I had tried to ask programming questions in class,
but it took a long time for students to complete even simple tasks,
and setting up a way to get the results was tedious.) I was surprised
how much the format changes the flow of the lecture. Consider for
example the topic of method overriding. In my textbook, and in my
lectures, I build up an example with a superclass and a subclass, tell
students that they must callsuper.method() to avoid a recursive
call, and that the subclass can’t access the private implementation
of the superclass. If you have the chance to ask a question every
minute or two, you don’t tell the student. You let the student build
up the example, and you enable the student to experience what
happens if one doesn’t includesuper qualifier in the call to the
superclass method.

The micro-lecture format also shines in the early lessons, when
it perfectly meshes with the object workbench in BlueJ. I show off
what an object can do, and then I ask the student to do something
and tell me what happened.

Changing the material to this format was quite time-consuming,
for three reasons. First, setting up the autograder requires both
planning and testing. In fact, Udacity’s autograder did not scale to
the volume of questions in this course. (For example, the module
on arrays has 29 such problems, where the equivalent module in
Udacity’s Python course has 11.) I convinced Udacity to use my
autograder instead, which is optimized for quick problem setup.

Recording a video lecture is tedious because videos are so hard
to edit. One wrong move, such as forgetting to turn on the camera,
or the screencast software, or the microphone, can mean a wasted
morning. Udacity’s setup is particularly complex since they film
the presenter’s hand over a Wacom tablet and overlay the actual
screencast. It took me several weeks of practice to master the tools
and become comfortable enough with the workflow to be effective.
I ended up modifying BlueJ, Xournal (a note-taking program for
Linux), and OpenBox (the window manager) to automate repetitive
steps, so that I could concentrate on my lecture without being
distracted by menus, mouse clicks, and other menial tasks.

Finally, Udacity insisted that their non-paying audience was
easily bored by traditional computer science subjects and that com-
puting Fibonacci numbers or factoring an integer into primes were
not viable activities. Since this audience was not captive, I was
urged to come up with examples that were meaningful to young
people. We developed a nice set of problems around a social net-
work. There was much talk about integrating socially relevant top-
ics, but most of them would have required an elaborate setup. In
the end, I settled for visual interest and built a small library to sup-
port a media computation approach, similar to that advocated by
Guzdial [6]. That library is optimized for use with the BlueJ work-
bench, refreshing images after every mutator invocation. Udacity
also did a fine job producing interviews with computer science stu-
dents, which were very motivating.

We collect the homework through the Udacity system and have
it autograded. There is currently no human review, and we are
evaluating whether that is reasonable by spot-checking student
programs. Our format of frequent small homeworks is a good match
for the capabilities of the system. We deem the exercises between
videos to be the equivalent of the closed lab of the regular course.

Table 1. Pass and Retention Rates in the CS1 Course
Semester Pass Retention
Spring 2010 66.7% 94.3%
Fall 2010 61.5% 100.0%
Spring 2011 83.1% 100.0%
Fall 2011 82.0% 98.2%
Spring 2012 68.6% 95.9%
Fall 2012 69.2% 97.3%
Spring 2013 78.2% 99.2%
Summer 2013 (Udacity) 70.4% 61.0%

Overall, I spent about 100 hours recording (and re-recording)
the lectures. Udacity provided a teaching assistant who presented
about as much material as I did, saving me from another 100
recording hours. Setting up the programming problems took an-
other 50 hours or so. Reviewing and fixing errors was very tedious
and consumed a significant amount of time. It is astonishing how a
massive audience will find every last error in every problem.

4. Student Performance
The pass rate of the online course was 70.4%, about the same as in
the regular course, where SJSU reports it as an average of 67.6%
over the last six semesters, with significant fluctuations from one
semester to the next (see Table 1). However, we cannot conclude
too much from that information. On the one hand, the composition
of the Udacity class was very different from that of our typical
classes. Many of the students are not SJSU students, and some are
quite young, having been enrolled by their parents! Moreover, in
the regular class, a student cannot drop after two weeks into the
semester. We allowed Udacity students to drop until quite late.
About 39% of students dropped.

Of the 478 remaining students, 50% got an A, a rate that is much
higher than in our regular course (around 20%). We were wonder-
ing whether this is a consequence of the fact that students can keep
submitting their answer to the autograder until they get it right (or
they run out of time–deadlines were strictly enforced). However,
last semester, we used the autograder in the regular course in the
same way, and students did not achieve similar results. Tables 2
and 3 show the weekly homework outcomes in the Spring (regular)
and Summer (Udacity) course. The percentages refer to the stu-
dents that arestill enrolled in each week. It appears that the Udacity
course further separates the well-known two modes in the grade
distribution.

5. Relationship Issues
There were times when Udacity’s business interests diverged from
those of the university. Udacity has its own reasons to allow stu-
dents to take the free course in parallel with the SJSU course. I
already mentioned that they insisted that the course must be inter-
esting for that group, but that’s not a conflict, since it improves our
course as well.

However, there was an issue about the difficulty of the program-
ming problems. Originally, Udacity provided step-by-step pseu-
docode and expected students to translate it into Java. I was told
that otherwise the free cohort would find the problems too frus-
trating. I got the problems changed, but it took some effort, and
it raised the question who controls the content of a jointly offered
course. In theory, SJSU has the power to set the content, but in prac-
tice, when one needs the vendor to set up the course in a very short
timeframe, it is easy to get into sticky situations when they delay
work that isn’t in their interest.

Reporting was also a challenge. Students naturally expected that
their grades would instantly appear in the LMS (the Canvas system

short description of paper 2 2013/8/28

Table 2. Spring 2013 Homework Assignments
Assignment A F Not turned in
0 88.36% 6.16% 5.48%
1 draft 73.29% 9.59% 9.59%
1 final 49.32% 8.90% 14.38%
2 draft 84.93% 4.11% 8.90%
2 final 77.40% 2.74% 6.16%
3 draft 51.37% 23.97% 8.90%
3 final 71.23% 6.85% 9.59%
4 draft 79.45% 4.11% 7.53%
4 final 80.82% 6.16% 7.53%
5 draft 84.25% 1.37% 8.90%
5 final 78.77% 6.85% 4.79%
6 draft 72.60% 4.79% 11.64%
6 final 54.11% 10.96% 8.90%
7 draft 72.60% 2.05% 14.38%
7 final 42.47% 12.33% 15.75%
8 draft 73.29% 4.79% 9.59%
8 final 70.55% 4.79% 13.70%
9 draft 77.40% 3.42% 13.01%
9 final 65.75% 7.53% 14.38%
10 draft 60.27% 9.59% 22.60%
10 final 69.18% 3.42% 17.12%
11 draft 68.49% 4.79% 16.44%
11 final 56.85% 10.27% 15.75%

Table 3. Summer 2013 Homework Assignments
Assignment A F Not turned in
0 56.35% 1.90% 22.46%
1 draft 79.70% 6.09% 14.21%
1 final 83.42% 1.44% 13.58%
2 draft 69.19% 3.13% 24.41%
2 final 70.89% 3.13% 20.10%
3 draft 62.66% 1.83% 33.68%
3 final 62.92% 4.57% 28.46%
4 draft 54.73% 2.00% 39.68%
4 final 56.06% 4.53% 32.76%
5 draft 52.87% 2.14% 40.19%
5 final 56.10% 5.01% 32.38%
6 draft 57.10% 0.68% 40.16%
6 final 49.79% 6.31% 33.80%
7 draft 53.16% 2.10% 42.78%
7 final 54.26% 2.41% 38.35%

that we use at SJSU). Udacity has no support for scores or for
FERPA-compliant grade reporting, and they were slow in providing
the raw data to us, which caused significant student unrest. To get
copies of the student work, for plagiarism checks and evaluation of
the effectiveness of the autograder, was also frustratingly slow.

Exams are proctored by an outside service. Due to its fee struc-
ture, we were unable to give two 75 minute proctured midterms,
as we do in the regular course, and had to settle for one 60 minute
proctored midterm and one unproctured midterm, in addition to the
proctored final exam.

As much as I like the short videos and student activities, I
regretted that both Udacity and SJSU insisted that there be no
textbook. The videos are not very useful as a reference, and many
topics are quite boring to cover in a video. Students complained
about the tedium of locating information in the videos. We created
some ”fact sheets” to supplement the videos, but they were not very
extensive.

Finally, the joint discussion forum was a problem. Our students
were greatly outnumbered by participants in the free cohort, which

Udacity reported at over 15,000. The SJSU instructor was not
eager to support the public forum under these circumstances. By
the time the course was completed, the forum had about 20,000
topics, many repetitive. Our students students expressed that it was
overwhelming and not what they expected in a for-credit course.
We ended up running a separate forum in our LMS just for them.

6. Conclusions
At SJSU, we don’t plan on replacing on-campus courses with
MOOCs. However, MOOCS provide a valuable alternative, partic-
ularly for motivated students and in flipped classrooms.

It is too early to tell how the Udacity course will compare to our
regular CS1 course, but initial observations are encouraging. There
is little unhappiness in the discussion forum, and completion rate
in the first homework assignment is only a little lower than in the
regular course.

The core technique of repeated short videos, immediately fol-
lowed by problems, is so compelling that I predict that we will
see much more of it. Programming, calculus, French grammar, and
many other topics benefit from constant computer-graded practice.
There is no particular reason why this technique should be limited
to MOOCs, and it is likely to appear in eBooks and learning man-
agement systems.I am not convinced that the videos are always the
best mode of delivery. Repeated short readings, immediately fol-
lowed by problems, might be just as effective.

When a university or a department wants to replicate what we
have done, one option is to partner with an outside vendor such as
Udacity or Coursera. An alternative is to use edX [7], a free and
open-source MOOC platform. This raises the question what value
an outside vendor provides.

In my experience, Udacity’s most valuable contribution has
been the video production. It would be very difficult and costly
to produce videos of comparable quality on campus. In contrast,
the value of their software platform is less clear. Running an open-
source platform, perhaps through a service provider, would give
an institution quite a bit more control over content, reporting, and
LMS integration.

Just like few faculty write their own textbooks, it is unlikely
that many will want to produce high quality courseware. It is
conceivable that textbook publishers will provide this material, to
be plugged into the campus LMS or edX instance, or that MOOC
vendors will morph into such publishers. For now, course creators
have the uncomfortable choice between creating their own material,
likely with limited visual appeal, or to partner with a vendor whose
business interests are not in perfect alignment with the interests of
the university.

References
[1] Harris, Pat L., SJSU and Udacity Partnership, Retrieved

June 14 from the San Jose State University web site,
http://blogs.sjsu.edu/today/2013/sjsu-and-udacity-partnership/

[2] Horstmann, Cay S. Big Java, 5th edition. John Wiley & Sons,2013

[3] Computer Science A Course Description, The College Board, 2010

[4] Owen Astrachan, Kim Bruce, Elliot Koffman, Michael Klling, and
Stuart Reges. 2005. Resolved: objects early has failed. SIGCSE Bull. 37,
1 (February 2005), 451-452.

[5] Kölling, M., Quig, B., Patterson, A. & Rosenburg, J. (2003) The
BlueJ system and its pedagogy, Journal of Computer Science Education,
Special issue on Learning and Teaching Object Technology, Vol 13, No
4.

[6] Guzdial, M. A media computation course for non-majors. In Proceed-
ings of the 8th Conference on Innovation and Technology in Computer
Science Education (ITiCSE), 2003.

short description of paper 3 2013/8/28

[7] EdX builds community of developers for its online and blended learning
platform, Press release, June 5, 2013, Retrieved June 14, 2013 from
the edX web site, https://www.edx.org/alert/edx-builds-community-
developers/944

[8] Mordechai (Moti) Ben-Ari. 2013. MOOCs on introductory program-
ming: a travelogue. ACM Inroads 4, 2 (June 2013), 58-61.

short description of paper 4 2013/8/28

