
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

Midterm I Study Guide

FUNDAMENTALS
+

BASIC DATA STRUCTURES

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

Information

2MIDTERM I

▸ Midterm I: Monday February 26, 1:15-2:30pm in the same room we always meet.

▸ You can bring one hand-written (ok hand-written on tablets and then printed) sheet of
papers (i.e. two pages).

▸ Review lecture slides and code, quizzes, labs, and assignments. Use the four practice
problems in this presentation.

▸ Practice writing code on paper.

Java Basics

3LECTURES 1-6

▸ Chapter 1.1 (Pages 8–35).

▸ Chapter 1.2 (Pages 64–77, 84—88, 96—99, 107).

▸ Quick overview of Java tutorials.

▸ https://docs.oracle.com/javase/tutorial/java/

▸ In general, review the basics of OOP and of Java so that you are comfortable reading
and writing code.

https://docs.oracle.com/javase/tutorial/java/

LECTURE 7 AND 8

ArrayLists

▸ Chapter 1.3 (Pages 136-137).

▸ code

▸ Java Oracle API https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

▸ Amortized and worst-case time analysis.

4

https://github.com/pomonacs622024sp/code/tree/main/Lecture8
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

LECTURE 8

Analysis of Algorithms

▸ Chapter 1.4 (Pages 172-205).

▸ Experimental analysis including doubling hypothesis. Pick two pairs of the largest input
sizes and check that the T(n)/T(n/2) is consistently expressed as some power of 2.

▸ Mathematical analysis including reviewing (not memorizing) useful approximations of
sums.

▸ Order of growth classifications.

▸ Review of running time of operations on array lists, linked lists, stacks and queues.

5

LECTURE 9

Singly Linked Lists

▸ Chapter 1.3 (Pages 142-146).

▸ code

▸ Worst-case time analysis for standard operations.

6

https://github.com/pomonacs622024sp/code/tree/main/Lecture9

LECTURE 10

Doubly Linked Lists

▸ Chapter 1.3 (Pages 126-157).

▸ code

▸ Java Oracle API.

▸ https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

▸ Worst-case time analysis for standard operations.

7

https://github.com/pomonacs622024sp/code/tree/main/Lecture10
https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

LECTURE 11

Stacks and Queues

▸ Chapter 1.3 (Pages 142-146).

▸ code for alternative implementations

▸ Worst-case time analysis for standard operations based on the underlying
implementation

8

https://github.com/pomonacs622024sp/code/tree/main/Lecture11

RESOURCES

Practice Problem 1

You are given the following Java code that implements a simplified version of a stack of Strings.

1. public class StringStack {
2. private String[] a;
3. private int n = 0;
4. public StringStack(int size)
5. {a = new String[size];}
6. public void push(String item)
7. {a[n++] = item;}
8. public String pop() {
9. {return a[--n];}
10. public static void main(String args[]) {
11. StringStack ss = new StringStack(10);
12. ss.push("47");
13. String s = ss.pop();
14. System.out.println(s);
15. }
16. }

In the next page, mark with an X in each of the rows what line numbers correspond to the description.

9

RESOURCES

Practice Problem 1 (cont'd)

10

1 2 3 4-5 6-7 8-9 10-15 11 12 13 14

Defines a
constructor

Names a class

Invokes a
method
(excluding
constructor)
Invokes a
constructor

Initializes a local
variable

Declares an
instance
variable

Creates an
object

Implements an
instance
method (excl.
constructor)
Implements a
static method

Applies a unary
operator

RESOURCES

Practice Problem 2

a. For each function in the table
below, please write down in the
simplest possible form. For example, if

 was , then would be
written as (or , if you like).

b. Order the answers from part a so that
they are in increasing order of rate of
growth, i.e., write the slowest growing
function on the left (i.e. the fastest
overall) and the fastest growing on the
right (i.e. the slowest overall) with the
others between in order of growth for
large values of .

f (n)
O(f (n))

f (n) 2n O(f (n))
n O(n)

n

11

Function Big-O
100n log n + 100n

n3 + 50n2 + 10000

10n2 + 20n log n

212

2n

30n

50n log n + n!

20 log n + 1000

RESOURCES

Practice Problem 3

12

▸ We will be adding a new method to the class SinglyLinkedList we built together with the
following signature: public void keep(int howMany)

▸ The method should modify the list so it only keeps the first howMany elements, dropping the
rest of the elements from the list. E.g., if myList contains 10 elements, then executing
myList.keep(6) should result in myList having only the first 6 elements of the list.

▸ a. Write the pre- and post-conditions (what assumptions need to be met for the method to
execute correctly and what will be true after the execution of the method, respectively) in
plain English.

▸ b. List at least one special case that either violates your preconditions or requires special
handling.

▸ c. Write the code for keep. If the preconditions are violated, you should throw an
IllegalArgumentException.

RESOURCES

Practice Problem 4

13

▸ Fill in the following class to
implement a queue using two
stacks. When elements are
enqueued, they are added to the
inbox stack. During dequeue or
peek operations, elements are
transferred from the inbox stack to
the outbox stack as needed.

▸ Here is an example of how it works:

public class TwoStackQueue<E> {

 ArrayListStack<E> inbox;
 ArrayListStack<E> outbox;

 public TwoStackQueue() implements Queue<E>{
 inbox = new ArrayListStack<E>();
 outbox = new ArrayListStack<E>();
 }

 public int size() {
 // FIX ME
 }

 public void enqueue(E element) {
 // FIX ME
 }

 private void transferElements() {
 // FIX ME
 }

 public E peek() {
 // FIX ME
 }

 public E dequeue() {
 // FIX ME
 }

 public boolean isEmpty(){
 // FIX ME
 }

 public static void main(String args[]) {
 TwoStackQueue<Integer> mq = new TwoStackQueue<Integer>();
 System.out.println(mq.isEmpty()); //true
 for (int i = 0; i < 8; i++){
 mq.enqueue(i);
 }
 System.out.println("Size: " + mq.size());
 System.out.println("Peek: " + mq.peek());
 for (int i = 0; i < 8; i++) {
 System.out.println(mq.dequeue()); // 0 1 2 3 4 5 6 7
 }

 }

}
https://stackoverflow.com/questions/69192/how-to-implement-a-queue-using-two-stacks

inbox outbox inbox outbox

inbox outbox inbox outbox

RESOURCES

Practice Problem 1 - ANSWER

14

1 2 3 4-5 6-7 8-9 10-15 11 12 13 14

Defines a
constructor X

Names a class X

Invokes a
method
(excluding
constructor)

X X X

Invokes a
constructor X X

Initializes a local
variable X X

Declares an
instance
variable

X X

Creates an
object X X X

Implements an
instance
method (excl.
constructor)

X X

Implements a
static method X

Applies a unary
operator X X

RESOURCES

Practice Problem 2 - ANSWER

a. For each function in the table
below, please write down in the
simplest possible form. For example, if

 was , then would be
written as (or , if you like). ->

b. Order the answers from part a so that
they are in increasing order of rate of
growth, i.e., write the slowest growing
function on the left (i.e. the fastest
overall) and the fastest growing on the
right (i.e. the slowest overall) with the
others between in order of growth for
large values of .

f (n)
O(f (n))

f (n) 2n O(f (n))
n O(n)

n

1, log n, n, n log n, n2, n3,2n, n!

15

Function Big-O
100n log n + 100n

n3 + 50n2 + 10000

10n2 + 20n log n

212

2n

30n

50n log n + n!

20 log n + 1000

n log n

n3

n2

1

2n

n

n!

log n

RESOURCES

Practice Problem 3 - ANSWER

16

▸ a.

▸ pre-condition: howMany>=0 &&
howMany<=size

▸ post-condition: list has howMany
elements

▸ b. howMany ==0, howMany==size,
howMany<0 or howMany>=size

▸ c. ->

public void keep(int howMany) {
 if (howMany > size || howMany < 0) {
 throw new IllegalArgumentException();
 }
 if(howMany==0){
 head = null;
 }
 else if(howMany == size){
 return;
 }
 else{
 Node finger = head;
 // Traverse the list until the (howMany - 1)th element
 for (int i = 0; i < howMany - 1; i++) {
 finger = finger.next;
 }
 // Set the next of the (howMany - 1)th element to null,
 // effectively cutting off the rest of the list.
 finger.next = null;
 }
 size = howMany;
}

RESOURCES

Practice Problem 4 - ANSWER

17

▸ Fill in the following class to
implement a queue using two
stacks. When elements are
enqueued, they are added to the
inbox stack. During dequeue or
peek operations, elements are
transferred from the inbox stack to
the outbox stack as needed.

▸ Here is an example of how it works:

public class TwoStackQueue<E> implements Queue<E>{

 ArrayListStack<E> inbox;
 ArrayListStack<E> outbox;

 public TwoStackQueue() {
 inbox = new ArrayListStack<E>();
 outbox = new ArrayListStack<E>();
 }

 public int size() {
 return inbox.size() + outbox.size();
 }

 public void enqueue(E element) {
 inbox.push(element);
 }

 private void transferElements() {
 while (!inbox.isEmpty()) {
 outbox.push(inbox.pop());
 }
 }

 public E peek() {
 if(outbox.isEmpty()){
 transferElements();
 }
 return outbox.peek();
 }

 public E dequeue() {
 if(outbox.isEmpty()){
 transferElements();
 }
 return outbox.pop();
 }

 public boolean isEmpty(){
 return inbox.isEmpty() && outbox.isEmpty();
 }
}

https://stackoverflow.com/questions/69192/how-to-implement-a-queue-using-two-stacks

inbox outbox inbox outbox

inbox outbox inbox outbox

