CSO62 DATA STRUCTURES AND ADVANCED PROGRAMMING

8: Analysis of Algorithms

Alexandra Papoutsaki she/her/hers

Lecture 8: Analysis of Algorithms

- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList operations

Different Roles

Programmer
needs a working solution

Theoretician
Wants an efficient solution Wants to understand

3-SUM: Given n distinct numbers, how many unordered triplets sum to 0 ?

- Input: 30-40-20 -10 400105
- Output: 4
- 30-40 10
- 30 -20-10
- -40400
- $-10 \quad 0 \quad 10$

EXPERIMENTAL ANALYSIS OF RUNNING TIME

3-SUM: Brute force algorithm

```
public class ThreeSum {
public static int count(int[] a) {
    int n = a.length;
    int count = 0;
    for (int i = 0; i < n; i++) {
        for (int j = i+1; j < n; j++) {
            for (int k = j+1; k < n; k++) {
                if (a[i] + a[j] + a[k] == 0) {
                        count++;
                }
            }
        }
    }
    return count;
    }
    public static void main(String[] args) {
    String filename = args[0];
    int fileSize = Integer.parseInt(args[1]);
    try {
    Scanner scanner = new Scanner(new File(filename));
    int intList[] = new int[fileSize];
    int i=0;
    while(scanner.hasNextInt()){
            intList[i]=scanner.nextInt();
            i++;
        }
        Stopwatch timer = new Stopwatch();
        int count = count(intList);
        System.out.println("elapsed time = " + timer.elapsedTime());
        System.out.println(count);
    }
    catch (IOException e) {
    throw new IllegalArgumentException("Could not open " + filename, e);
    }

\section*{Empirical Analysis}
' Input: 8ints.txt
- Output: 4 and 0
' Input: 1 Kints.txt
' Output: 70 and 0.081
" Input: 2Kints.txt
" Output: 528 and 0.38
" Input: 2Kints.txt
" Output: 528 and 0.371
" Input: 4Kints.txt
' Output: 4039 and 2.792
' Input: 8Kints.txt
' Output: 32074 and 21.623
' Input: 16Kints.txt
" Output: 255181 and 177.344

Input size
\begin{tabular}{cc}
\hline 8 & 0 \\
\hline 1000 & 0.081 \\
\hline 2000 & 0.38 \\
\hline 2000 & 0.371 \\
\hline 4000 & 2.792 \\
\hline 8000 & 21.623 \\
\hline 16000 & 177.344 \\
\hline
\end{tabular}

Plots and log-log plots
Straight line of slope 3

- Regression: \(T(n)=a n^{b}\) (power-law).
- \(\log T(n)=b \log n+\log a\), where \(b\) is slope.
- Experimentally: \(\sim 0.42 \times 10^{-10} n^{3}\), in our example for ThreeSum.
\begin{tabular}{cc}
8 & 0 \\
\hline 1000 & 0.081 \\
\hline 2000 & 0.38 \\
\hline 4000 & 2.792 \\
\hline 8000 & 21.623 \\
\hline 16000 & 177.344
\end{tabular}

\section*{Doubling Hypothesis}
- Doubling input size increases running time by a factor of \(\frac{T(n)}{T(n / 2)}\)
- Run program doubling the size of input. Estimate factor of growth:
\[
\frac{T(n)}{T(n / 2)}=\frac{a n^{b}}{a\left(\frac{n}{2}\right)^{b}}=2^{b}
\]
- E.g., in our example, for pair of input sizes 8000 and 16000 the ratio
\(\left(\frac{177.344}{21.623}\right)\) is 8.2 or \(\sim 8\) which can be written as \(2^{3}\), therefore \(b\) is approximately 3 .
- Assuming we know \(b\), we can figure out \(a\).
'E.g., in our example, \(T(16000)=177.34=a \times 16000^{3}\).
- Solving for \(a\) we get \(a=0.42 \times 10^{-10}\).

\section*{PRACTICE TIME}
- Suppose you time your code and you make the following observations. Which function is the closest model of \(T(n)\) ?
A. \(n^{2}\)
B. \(6 \times 10^{-4} n\)
C. \(5 \times 10^{-9} n^{2}\)
D. \(7 \times 10^{-9} n^{2}\)
\begin{tabular}{cc} 
Input size & Time \\
\hline 1000 & 0 \\
\hline 2000 & 0.0 \\
\hline 4000 & 0.1 \\
\hline 8000 & 0.3 \\
\hline 16000 & 1.3 \\
\hline 32000 & 5.1
\end{tabular}

\section*{ANSWER}
- C. \(5 \times 10^{-9} n^{2}\)
- \(\mathrm{T}(32000) / \mathrm{T}(16000)\) is approximately 4 , therefore \(b=2\).
- \(T(32000)=5.1=a \times 32000^{2}\).
- Solving for \(a=4.98 \times 10^{-9}\).s
\begin{tabular}{cc} 
Input size & Time \\
\hline 1000 & 0 \\
\hline 2000 & 0.0 \\
\hline 4000 & 0.1 \\
\hline 8000 & 0.3 \\
\hline 16000 & 1.3 \\
\hline 32000 & 5.1
\end{tabular}

\section*{Effects on Performance}
- System independent effects: Algorithm + input data
- Determine \(b\) in power law relationships.
- System dependent effects: Hardware (e.g., CPU, memory, cache) + Software (e.g., compiler, garbage collector) + System (E.g., operating system, network, etc).
- Dependent and independent effects determine \(a\) in power law relationships.
* Although it is hard to get precise measurements, experiments in Computer Science are cheap to run.

\section*{Lecture 8: Analysis of Algorithms}
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList operations

\section*{Total Running Time}
- Popularized by Donald Knuth in the 60s in the four volumes of "The Art of Computer Programming".
" Knuth won the Turing Award (The "Nobel" in CS) in 1974.
- In principle, accurate mathematical models for performance of algorithms are available.
- Total running time \(=\) sum of cost \(x\) frequency for all operations.
- Need to analyze program to determine set of operations.
- Exact cost depends on machine, compiler.
- Frequency depends on algorithm and input data.

\section*{Cost of Basic Operations}
- Add < integer multiply < integer divide < floating-point add < floating-point multiply < floating-point divide.
Operation
Example
Nanoseconds
\begin{tabular}{ccl}
\hline Variable declaration & int a & \(c_{1}\) \\
\hline Assignment statement & \(\mathrm{a}=\mathrm{b}\) & \(c_{2}\) \\
\hline Integer comparison & \(\mathrm{a}<\mathrm{b}\) & \(c_{3}\) \\
\hline Array element access & \(\mathrm{a}[\mathrm{i}]\) & \(c_{4}\) \\
\hline Array length & a.length & \(c_{5}\) \\
\hline 1D array allocation & new int \([\mathrm{n}]\) & \(c_{6} n\) \\
\hline 2D array allocation & new int \([\mathrm{n}][\mathrm{n}]\) & \(c_{7} n^{2}\) \\
\hline string concatenation & \(\mathrm{s}+\mathrm{t}\) & \(c_{8} n\)
\end{tabular}

\section*{Example:1-SUM}
- How many operations as a function of \(n\) ?
```

int count = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0) {
count++;
}
}

```
\begin{tabular}{cc} 
Operation & Frequency \\
\hline Variable declaration & 2 \\
\hline Assignment & 2 \\
\hline Less than & \(n+1\) \\
\hline Equal to & \(n\) \\
\hline Array access & \(n\) \\
\hline Increment & \(n\) to \(2 n\)
\end{tabular}

\section*{Example: 2-SUM}
\[
1+2+3+\ldots+n=n(n+1) / 2
\]
- How many operations as a function of \(n\) ?
```

int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
if (a[i] + a[j] == 0) {
count++;
}
}
}
Operation
Frequency

Variable declaration	$n+2$
Assignment	$n+2$
Less than	$n+1)(n+2) / 2$
Equal to	$n(n-1) / 2$
Array access	$n(n+1) / 2$ to n^{2}

```

\section*{Tilde Notation}
- Estimate running time (or memory) as a function of input size \(n\).
- Ignore lower order terms.
- When \(n\) is large, lower order terms become negligible.
- Example 1: \(\frac{1}{6} n^{3}+10 n+100 \sim n^{3}\)
- Example 2: \(\frac{1}{6} n^{3}+100 n^{2}+47 \sim n^{3}\)
- Example 3: \(\frac{1}{6} n^{3}+100 n^{\frac{2}{3}}+\frac{1 / 2}{n} \sim n^{3}\)

\section*{Simplification}
- Cost model: Use some basic operation as proxy for running time. E.g., array accesses
- Combine it with tilde notation.
\begin{tabular}{ccc}
\hline Operation & Frequency & Tilde notation \\
\hline Variable declaration & \(n+2\) & \(\sim n\) \\
\hline Assignment & \(n+2\) & \(\sim n\) \\
\hline Less than & \((n+1)(n+2) / 2\) & \(\sim n^{2}\) \\
\hline Equal to & \(n(n-1) / 2\) & \(\sim n^{2}\) \\
\hline Array access & \(n(n-1)\) & \(\sim n^{2}\) \\
\hline Increment & \(n(n+1) / 2\) to \(n^{2}\) & \(\sim n^{2}\)
\end{tabular}
- \(\sim n^{2}\) array accesses for the 2-SUM problem

\section*{Back to the 3-SUM problem}
- Approximately how many array accesses as a function of input size \(n\) ?
```

int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
for (int k = j+1; k < n; k++) {
if (a[i] + a[j] + a[k] == 0) {
count++;
}
}
}
}

```
\(\sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n-1} 3=1 / 2 n\left(n^{2}-3 n+2\right) \sim n^{3}\) array accesses.

\section*{Lecture 8: Analysis of Algorithms}
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
, Order of Growth Classification
- Analysis of ArrayList operations

\section*{Types of analysis}
- Best case: lower bound on cost.
- What the goal of all inputs should be.
- Often not realistic, only applies to "easiest" input.
- Worst case: upper bound on cost.
- Guarantee on all inputs.
- Calculated based on the "hardest" input.
- Average case: expected cost for random input.
- A way to predict performance.
- Not straightforward how we model random input.

\section*{Worst case analysis}
- Definition: If \(f(n) \sim c g(n)\) for some constant \(c>0\), then the order of growth of \(f(n)\) is \(g(n)\).
- Ignore leading coefficients.
- Ignore lower-order terms.
- We will be using the big-Oh(O) notation. For example:
- \(3 n^{3}+2 n+7=O\left(n^{3}\right)\)
- \(2^{n}+n^{2}=O\left(2^{n}\right)\)
- \(1000=O(1)\)
- Yes, \(3 n^{3}+2 n+7=O\left(n^{6}\right)\), but that's a rather useless bound.

\section*{Common order of growth classifications}
- Good news: only a small number of function suffice to describe the order-of-growth of typical algorithms.
- 1: constant
- Doubling the input size won't affect the running time. Holy-grail.
\({ }^{\text {- }} \log n\) : logarithmic
" Doubling the input size will increase the running time by a constant.
- \(n\) : linear
* Doubling the input size will result to double the running time.
- \(n \log n\) : linearithmic
" Doubling the input size will result to a bit longer than double the running time.
- \(n^{2}\) : quadratic
- Doubling the input size will result to four times as much running time.
- \(n^{3}\) : cubic
- Doubling the input size will result to eight times as much running time.
- \(2^{n}\) : exponential

When you increase the input by some constant amount, the time taken is doubled.
" \(n\) !: factorial
- Running time grows exponentially with the size of the input.

\section*{ORDER OF GROWTH CLASSIFICATION}

From slowest growing to fastest growing
\[
1<\log n<n<n \log n<n^{2}<n^{3}<2^{n}<n!
\]


\section*{Common order of growth classifications}
\begin{tabular}{|c|c|c|c|}
\hline Order-of-growth & Name & Example code & \(T(n) / T(n / 2)\) \\
\hline 1 & Constant & \(a[i]=b+c\) & 1 \\
\hline \(\log n\) & Logarithmic & while \((n>1)\{n=n / 2 ; . .\). & \(\sim 1\) \\
\hline \(n\) & Linear & for(int \(i=0 ; i<n ; i++)\) & 2 \\
\hline \(n \log n\) & Linearithmic & ```
for (i = 1; i <= n; i++){
    int x = n;
    while ( }x>0\mathrm{ )
        x -= i;
}
``` & \(\sim 2\) \\
\hline \(n^{2}\) & Quadratic & for(int \(i=0 ; i<n ; i++)\) \{ for(int \(j=0 ; j<n ; j++)\{\) & 4 \\
\hline \(n^{3}\) & Cubic & ```
for(int i=0; i<n; i++) {
 for(int j=0; j<n; j++){
 for(int k=0; k<n; k++){
``` & 8 \\
\hline
\end{tabular}

\section*{Useful approximations}
- Harmonic sum: \(H_{n}=1+1 / 2+1 / 3+\ldots+1 / n \quad \sim \ln n\)
- Triangular sum: \(1+2+3+\ldots+n \sim n^{2}\)
- Geometric sum: \(1+2+4+8+\ldots+n=2 n-1 \sim n\), when \(n\) power of 2.
- Binomial coefficients: \(\binom{n}{k} \sim \frac{n^{k}}{k!}\) when k is a small constant.
- Use a tool like Wolfram alpha.

\section*{Lecture 8: Analysis of Algorithms}
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList Operations

\section*{Worst-case performance of \(\operatorname{add}()\) is \(O(n)\)}
"Cost model: 1 for insertion, \(n\) for copying \(n\) items to a new array. 'Worst-case: If ArrayList is full, add() will need to call resize to create a new array of double the size, copy all items, insert new one.
\({ }^{-}\)Total cost: \(n+1=O(n)\).
'Realistically, this won't be happening often and worst-case analysis can be too strict. We will use amortized time analysis instead.

\section*{Amortized analysis}
"Amortized cost per operation: for a sequence of \(n\) operations, it is the total cost of operations divided by \(n\).

\section*{Amortized analysis for \(n\) add() operations}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline Insertion Cost & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Copying Cost & 0 & 1 & 2 & 0 & 4 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 \\
\hline \begin{tabular}{l}
Total \\
Cost
\end{tabular} & 1 & 2 & 3 & 1 & 5 & 1 & 1 & 1 & 9 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 17 \\
\hline
\end{tabular}
- As the ArrayList increases, doubling happens half as often but costs twice as much.
- \(O\) (total cost) \(=\sum\) ("cost of insertions") \(+\sum\) ("cost of copying")
- \(\sum(\) "cost of insertions") \(=n\).
" \(\sum\) ("cost of copying") \(=1+2+2^{2}+\ldots 2^{\left\lfloor\log _{2} n\right\rfloor} \leq 2 n\).
- \(O\) (total cost) \(\leq 3 n\), therefore amortized cost is \(\leq \frac{3 n}{n}=3=O^{+}(1)\), but "lumpy".

Amortized analysis for \(n\) add() operations when increasing ArrayList by 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline Insertion Cost & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Copying Cost & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline Total Cost & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline
\end{tabular}
- \(\sum(\) "cost of insertions" \()=n\).
- \(\sum(\) "cost of copying") \(=1+2+3+\ldots+n-1=n(n-1) / 2\).
- \(O\) (total cost) \(=n+n(n-1) / 2=n(n+1) / 2\), therefore amortized cost is \((n+1) / 2\) or \(O^{+}(n)\).
'Same idea when increasing ArrayList size by a constant.
\({ }^{\text {'Th }}\) This is why in the lab on Friday, we saw that doubling was the fastest and linear(1) the slowest.

\section*{Lecture 8: Analysis of Algorithms}
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList operations

\section*{Readings:}
- Recommended Textbook:
- Chapter 1.4 (pages 172-205)
- Recommended Textbook Website:
- Resizable arrays (arraylists): https://algs4.cs.princeton.edu/13stacks/
- Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

Code
- Lecture 8 code

\section*{Practice Problems:}
( 1.4.1-1.4.9, 1.4.32, 1.4.35-1.4.36```

