
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

8: Analysis of Algorithms

BASIC DATA STRUCTURES

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

2

Some slides adopted from Algorithms 4th Edition or COS226

EXPERIMENTAL ANALYSIS OF RUNNING TIME

Different Roles

3

You

Programmer
needs a working solution

Theoretician
Wants to understand

User
Wants an efficient solution

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

3-SUM: Given distinct numbers, how many unordered triplets sum to 0?n

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Input: 30 -40 -20 -10 40 0 10 5
‣ Output: 4
‣ 30 -40 10
‣ 30 -20 -10
‣ -40 40 0
‣ -10 0 10

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

public class ThreeSum {

public static int count(int[] a) {
 int n = a.length;
 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 for (int k = j+1; k < n; k++) {
 if (a[i] + a[j] + a[k] == 0) {
 count++;
 }
 }
 }
 }
 return count;
 }

public static void main(String[] args) {
 String filename = args[0];
 int fileSize = Integer.parseInt(args[1]);
 try {
 Scanner scanner = new Scanner(new File(filename));
 int intList[] = new int[fileSize];
 int i=0;
 while(scanner.hasNextInt()){
 intList[i]=scanner.nextInt();
 i++;
 }
 Stopwatch timer = new Stopwatch();
 int count = count(intList);
 System.out.println("elapsed time = " + timer.elapsedTime());
 System.out.println(count);
 }
 catch (IOException e) {
 throw new IllegalArgumentException("Could not open " + filename, e);
 }
 }

3-SUM: Brute force algorithm

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Input: 8ints.txt
‣ Output: 4 and 0

‣ Input: 1Kints.txt
‣ Output: 70 and 0.081

‣ Input: 2Kints.txt
‣ Output: 528 and 0.38

‣ Input: 2Kints.txt
‣ Output: 528 and 0.371

‣ Input: 4Kints.txt
‣ Output: 4039 and 2.792

‣ Input: 8Kints.txt
‣ Output: 32074 and 21.623

‣ Input: 16Kints.txt
‣ Output: 255181 and 177.344

Input size Time
8 0

1000 0.081
2000 0.38
2000 0.371
4000 2.792
8000 21.623

16000 177.344

Empirical Analysis

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

 n

T(n)

logn

logT(n)

Straight line of slope 3

‣ Regression: (power-law).
‣ , where is slope.
‣ Experimentally: ~ , in our example for ThreeSum.

T(n) = anb

log T(n) = b log n + log a b
0.42 × 10−10n3

Plots and log-log plots

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Doubling input size increases running time by a factor of

‣ Run program doubling the size of input. Estimate factor of growth:

‣ .

‣ E.g., in our example, for pair of input sizes and the ratio

 is or ~8 which can be written as , therefore is

approximately .
‣ Assuming we know , we can figure out .
‣ E.g., in our example, .
‣ Solving for we get .

T(n)
T(n/2)

T(n)
T(n/2)

=
anb

a(n
2)b

= 2b

8000 16000

(
177.344
21.623

) 8.2 23 b

3
b a

T(16000) = 177.34 = a × 160003

a a = 0.42 × 10−10

Input size Time
8 0

1000 0.081
2000 0.38
4000 2.792
8000 21.623

16000 177.344
Doubling Hypothesis

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Suppose you time your code and you make the following
observations. Which function is the closest model of ?

A.
B.
C.
D.

T(n)
n2

6 × 10−4n
5 × 10−9n2

7 × 10−9n2

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3

16000 1.3
32000 5.1

PRACTICE TIME

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ C.
‣ T(32000)/T(16000) is approximately , therefore .
‣ .
‣ Solving for .s

5 × 10−9n2

4 b = 2
T(32000) = 5.1 = a × 320002

a = 4.98 × 10−9

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3

16000 1.3
32000 5.1

ANSWER

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ System independent effects: Algorithm + input data
‣ Determine in power law relationships.

‣ System dependent effects: Hardware (e.g., CPU, memory,
cache) + Software (e.g., compiler, garbage collector) + System
(E.g., operating system, network, etc).
‣ Dependent and independent effects determine in power

law relationships.

‣ Although it is hard to get precise measurements, experiments
in Computer Science are cheap to run.

b

a

Effects on Performance

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

12

MATHEMATICAL MODELS OF RUNNING TIME

‣ Popularized by Donald Knuth in the 60s in the four volumes of
“The Art of Computer Programming”.
‣ Knuth won the Turing Award (The “Nobel” in CS) in 1974.

‣ In principle, accurate mathematical models for performance of
algorithms are available.

‣ Total running time = sum of cost x frequency for all operations.
‣ Need to analyze program to determine set of operations.
‣ Exact cost depends on machine, compiler.
‣ Frequency depends on algorithm and input data.

Total Running Time

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ Add < integer multiply < integer divide < floating-point add <
floating-point multiply < floating-point divide.

Operation Example Nanoseconds
Variable declaration int a

Assignment statement a = b
Integer comparison a < b

Array element access a[i]
Array length a.length

1D array allocation new int[n]
2D array allocation new int[n][n]

string concatenation s+t

c1

c2

c3
c4

c5
c6n
c7n2

c8n

Cost of Basic Operations

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 if (a[i] == 0) {
 count++;
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton 2n

n
n

n + 1
2
2

Example:1-SUM

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 if (a[i] + a[j] == 0) {
 count++;
 }
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton(n + 1)/2 n2

n(n − 1)
n(n − 1)/2

(n + 1)(n + 2)/2
n + 2
n + 2

BECOMING TOO TEDIOUS TO CALCULATE

Example: 2-SUM 1 + 2 + 3 + . . . + n = n(n + 1)/2

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ Estimate running time (or memory) as a function of input size .
‣ Ignore lower order terms.
‣ When is large, lower order terms become negligible.

‣ Example 1: ~

‣ Example 2: ~

‣ Example 3: ~

n

n

1
6

n3 + 10n + 100 n3

1
6

n3 + 100n2 + 47 n3

1
6

n3 + 100n
2
3 +

1/2
n

n3

Tilde Notation

MATHEMATICAL MODELS OF RUNNING TIME

‣ Cost model: Use some basic operation as proxy for running
time. E.g., array accesses

‣ Combine it with tilde notation.

‣ ~ array accesses for the 2-SUM problemn2

Operation Frequency Tilde notation

Variable declaration ~
Assignment ~

Less than ~
Equal to ~

Array access ~
Increment to ~

n(n − 1)

n + 2
n + 2

n2
n2
n2
n2
n
n

n2

Simplification

n(n + 1)/2

n(n − 1)/2
(n + 1)(n + 2)/2

MATHEMATICAL MODELS OF RUNNING TIME

‣ Approximately how many array accesses as a function of input size
?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 for (int k = j+1; k < n; k++) {
 if (a[i] + a[j] + a[k] == 0) {
 count++;
 }
 }
 }
 }

‣ array accesses.

n

n−1

∑
i=0

n−1

∑
j=i+1

n−1

∑
k=j+1

3 = 1/2n(n2 − 3n + 2) ∼ n3

Back to the 3-SUM problem

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

20

ORDER OF GROWTH CLASSIFICATION

Types of analysis

▸ Best case: lower bound on cost.

▸ What the goal of all inputs should be.

▸ Often not realistic, only applies to “easiest” input.

▸ Worst case: upper bound on cost.

▸ Guarantee on all inputs.

▸ Calculated based on the “hardest” input.

▸ Average case: expected cost for random input.

▸ A way to predict performance.

▸ Not straightforward how we model random input.

ORDER OF GROWTH CLASSIFICATION

‣ Definition: If ~ for some constant , then the order of growth of
 is .

‣ Ignore leading coefficients.
‣ Ignore lower-order terms.

▸ We will be using the big-Oh (O) notation. For example:

▸

▸

▸

▸ Yes, , but that’s a rather useless bound.

f(n) cg(n) c > 0
f(n) g(n)

3n3 + 2n + 7 = O(n3)

2n + n2 = O(2n)

1000 = O(1)

3n3 + 2n + 7 = O(n6)

Worst case analysis

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

‣ Good news: only a small number of function suffice to describe the order-of-growth of typical
algorithms.

‣ : constant
‣ Doubling the input size won’t affect the running time. Holy-grail.

‣ : logarithmic
‣ Doubling the input size will increase the running time by a constant.

‣ : linear
‣ Doubling the input size will result to double the running time.

‣ : linearithmic
‣ Doubling the input size will result to a bit longer than double the running time.

‣ : quadratic
‣ Doubling the input size will result to four times as much running time.

‣ : cubic
‣ Doubling the input size will result to eight times as much running time.

‣ : exponential
‣ When you increase the input by some constant amount, the time taken is doubled.

‣ : factorial
‣ Running time grows exponentially with the size of the input.

1

log n

n

n log n

n2

n3

2n

n!

Common order of growth classifications

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

bigocheatsheet.com

From slowest growing to fastest growing

‣ < < < < < < < 1 log n n n log n n2 n3 2n n!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

Order-of-growth Name Example code

Constant a[i]=b+c

Logarithmic while(n>1){n=n/2;…} ~

Linear for(int i=0; i<n; i++)

Linearithmic
for (i = 1; i <= n; i++){

int x = n;
 while (x > 0)

 x -= i;
 }

~

Quadratic for(int i=0; i<n; i++) {  
 for(int j=0; j<n; j++){

Cubic
for(int i=0; i<n; i++) {  
 for(int j=0; j<n; j++){  
 for(int k=0; k<n; k++){

T(n)/T(n /2)

1

log n

n

n log n

n2

n3

1

1

2

2

4

8

Common order of growth classifications

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ Harmonic sum: ~
‣ Triangular sum: ~
‣ Geometric sum: ~ , when

power of 2.

‣ Binomial coefficients: ~ when k is a small constant.

‣ Use a tool like Wolfram alpha.

Hn = 1 + 1/2 + 1/3 + . . . + 1/n ln n
1 + 2 + 3 + . . . + n n2

1 + 2 + 4 + 8 + . . . + n = 2n − 1 n n

(n
k) nk

k!

Useful approximations

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList Operations

27

ANALYSIS OF ARRAYLIST OPERATIONS

Worst-case performance of add() is O(n)

‣Cost model: 1 for insertion, for copying items to a new array.
‣Worst-case: If ArrayList is full, add() will need to call resize to
create a new array of double the size, copy all items, insert new one.
‣Total cost: .

‣Realistically, this won’t be happening often and worst-case analysis
can be too strict. We will use amortized time analysis instead.

n n

n + 1 = O(n)

28

ANALYSIS OF ARRAYLIST OPERATIONS

Amortized analysis

‣Amortized cost per operation: for a sequence of operations, it is
the total cost of operations divided by .

n
n

29

ANALYSIS OF ARRAYLIST OPERATIONS

Amortized analysis for add() operationsn

‣ As the ArrayList increases, doubling happens half as often but costs twice as much.
‣ total cost)= (“cost of insertions”) + (“cost of copying”)
‣ (“cost of insertions”) .
‣ (“cost of copying”) = .

‣ total cost) , therefore amortized cost is , but “lumpy”.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

O(∑ ∑
∑ = n

∑ 1 + 2 + 22 + . . .2⌊log2 n⌋ ≤ 2n

O(≤ 3n ≤
3n
n

= 3 = O+(1)

30

ANALYSIS OF ARRAYLIST OPERATIONS

Amortized analysis for add() operations when increasing ArrayList by 1.n

‣ (“cost of insertions”) .
‣ (“cost of copying”) = .
‣ total cost) , therefore amortized cost is or

.
‣Same idea when increasing ArrayList size by a constant.

‣This is why in the lab on Friday, we saw that doubling was the fastest and linear(1) the
slowest.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Copying
Cost 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Total
Cost 17

∑ = n

∑ 1 + 2 + 3 + . . . + n − 1 = n(n − 1)/2
O(= n + n(n − 1)/2 = n(n + 1)/2 (n + 1)/2
O+(n)

31

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

32

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Recommended Textbook:

▸ Chapter 1.4 (pages 172-205)

▸ Recommended Textbook Website:

▸ Resizable arrays (arraylists): https://algs4.cs.princeton.edu/13stacks/

▸ Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

33

Practice Problems:
▸ 1.4.1-1.4.9, 1.4.32, 1.4.35-1.4.36

Code
▸ Lecture 8 code

https://algs4.cs.princeton.edu/13stacks/
https://algs4.cs.princeton.edu/14analysis/
https://github.com/pomonacs622024sp/code/blob/main/Lecture8

