CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

8: Analysis of Algorithms

Alexandra Papoutsaki she/her/hers Lecture 8: Analysis of Algorithms

- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList operations

Different Roles

3-SUM: Given *n* distinct numbers, how many unordered triplets sum to 0?

- Input: 30 -40 -20 -10 40 0 10 5
- Output: 4
 - 30 -40 10
 - ► 30 -20 -10
 - ► -40 40 0
 - ► -10 0 10

3-SUM: Brute force algorithm

```
public class ThreeSum {
public static int count(int[] a) {
         int n = a.length;
         int count = 0;
         for (int i = 0; i < n; i++) {</pre>
              for (int j = i+1; j < n; j++) {</pre>
                  for (int k = j+1; k < n; k++) {
                       if (a[i] + a[j] + a[k] == 0) {
                            count++;
                       }
                  }
              }
         }
                                          public static void main(String[] args) {
         return count;
                                                   String filename = args[0];
    }
                                                   int fileSize = Integer.parseInt(args[1]);
                                                   try {
                                                        Scanner scanner = new Scanner(new File(filename));
                                                        int intList[] = new int[fileSize];
                                                        int i=0;
                                                        while(scanner.hasNextInt()){
                                                             intList[i]=scanner.nextInt();
                                                             i++;
                                                        }
                                                        Stopwatch timer = new Stopwatch();
                                                        int count = count(intList);
                                                        System.out.println("elapsed time = " + timer.elapsedTime());
                                                        System.out.println(count);
                                                    }
                                                   catch (IOException e) {
                                                        throw new IllegalArgumentException("Could not open " + filename, e);
                                                   }
                                               }
```

Empirical Analysis

 Input: 8ints.txt Output: 4 and 0 	Input size	Time
 Input: 1Kints.txt Output: 70 and 0.081 	8	0
 Input: 2Kints.txt Output: 528 and 0.38 	1000	0.081
 Input: 2Kints.txt 	2000	0.38
 Output: 528 and 0.371 Input: 4Kints.txt 	2000	0.371
Output: 4039 and 2.792	4000	2.792
 Input: 8Kints.txt Output: 32074 and 21.623 	8000	21.623
 Input: 16Kints.txt Output: 255181 and 177.344 	16000	177.344

• Regression: $T(n) = an^b$ (power-law).

- ▶ $\log T(n) = b \log n + \log a$, where *b* is slope.
- Experimentally: ~ $0.42 \times 10^{-10} n^3$, in our example for ThreeSum.

	Input size	Time
EVDEDIMENTAL ANALVEIC OF DUNINUME TIME	8	0
EXPERIMENTAL ANALISIS OF KUNNING TIME		0.081
	2000	0.38
	4000	2.792
Doubling Hypothesis		21.623
	16000	177.344

- Doubling input size increases running time by a factor of $\frac{T(n)}{T(n/2)}$
- Run program doubling the size of input. Estimate factor of growth: $\frac{T(n)}{T(n/2)} = \frac{an^b}{a(\frac{n}{2})^b} = 2^b.$
- E.g., in our example, for pair of input sizes 8000 and 16000 the ratio $(\frac{177.344}{21.623})$ is 8.2 or ~8 which can be written as 2^3 , therefore *b* is approximately 3.
- Assuming we know b, we can figure out a.
 - E.g., in our example, $T(16000) = 177.34 = a \times 16000^3$.
 - Solving for a we get $a = 0.42 \times 10^{-10}$.

PRACTICE TIME

Suppose you time your code and you make the following observations. Which function is the closest model of *T*(*n*)?
 A. *n*²

B.	$6 \times 10^{-4} n$
C.	$5 \times 10^{-9} n^2$
D.	$7 \times 10^{-9} n^2$

Input size	Time
1000	0
2000	0.0
4000	0.1
8000	0.3
16000	1.3
32000	5.1

ANSWER

- C. $5 \times 10^{-9} n^2$
- T(32000)/T(16000) is approximately 4, therefore b = 2.
- $T(32000) = 5.1 = a \times 32000^2$.
- Solving for $a = 4.98 \times 10^{-9}$.s

Input size	Time
1000	0
2000	0.0
4000	0.1
8000	0.3
16000	1.3
32000	5.1

Effects on Performance

- System independent effects: Algorithm + input data
 - Determine b in power law relationships.
- System dependent effects: Hardware (e.g., CPU, memory, cache) + Software (e.g., compiler, garbage collector) + System (E.g., operating system, network, etc).
 - Dependent and independent effects determine a in power law relationships.
- Although it is hard to get precise measurements, experiments in Computer Science are cheap to run.

Lecture 8: Analysis of Algorithms

- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList operations

Total Running Time

- Popularized by Donald Knuth in the 60s in the four volumes of "The Art of Computer Programming".
 - Knuth won the Turing Award (The "Nobel" in CS) in 1974.
- In principle, accurate mathematical models for performance of algorithms are available.
- Total running time = sum of cost x frequency for all operations.
- Need to analyze program to determine set of operations.
- Exact cost depends on machine, compiler.
- Frequency depends on algorithm and input data.

Cost of Basic Operations

Add < integer multiply < integer divide < floating-point add < floating-point multiply < floating-point divide.

Operation	Example	Nanoseconds
Variable declaration	int a	<i>c</i> ₁
Assignment statement	a = b	<i>c</i> ₂
Integer comparison	a < b	<i>c</i> ₃
Array element access	a[i]	<i>C</i> ₄
Array length	a.length	<i>C</i> ₅
1D array allocation	new int[n]	<i>c</i> ₆ <i>n</i>
2D array allocation	new int[n][n]	$c_7 n^2$
string concatenation	s+t	$c_8 n$

Example:1-SUM

How many operations as a function of n?

```
int count = 0;
for (int i = 0; i < n; i++) {
    if (a[i] == 0) {
        count++;
    }
}
```

Operation	Frequency	
Variable declaration	2	
Assignment	2	
Less than	<i>n</i> + 1	
Equal to	n	
Array access	п	
Increment	n to $2n$	

$$1 + 2 + 3 + \ldots + n = n(n + 1)/2$$

Example: 2-SUM

How many operations as a function of n?

```
int count = 0;
 for (int i = 0; i < n; i++) {</pre>
     for (int j = i+1; j < n; j++) {</pre>
         if (a[i] + a[j] == 0) {
             count++;
                                          BECOMING TOO TEDIOUS TO CALCULATE
         }
     }
}
       Operation
                                         Frequency
                                          n + 2
   Variable declaration
                                          n+2
       Assignment
                                    (n+1)(n+2)/2
        Less than
                                       n(n-1)/2
        Equal to
                                        n(n-1)
       Array access
                                                  to n^2
                                   n(n+1)/2
        Increment
```

Tilde Notation

- Estimate running time (or memory) as a function of input size n.
- Ignore lower order terms.
 - When n is large, lower order terms become negligible.

• Example 1:
$$\frac{1}{6}n^3 + 10n + 100 \sim n^3$$

• Example 2:
$$\frac{1}{6}n^3 + 100n^2 + 47 \sim n^3$$

• Example 3:
$$\frac{1}{6}n^3 + 100n^{\frac{2}{3}} + \frac{1/2}{n} \sim n^3$$

Simplification

- Cost model: Use some basic operation as proxy for running time. E.g., array accesses
- Combine it with tilde notation.

Operation	Frequency	Tilde notation
Variable declaration	<i>n</i> + 2	~ <i>N</i>
Assignment	<i>n</i> + 2	~ 11
Less than	(n+1)(n+2)/2	~ <i>n</i> ²
Equal to	n(n-1)/2	~ n ²
Array access	n(n - 1)	~ n ²
Increment	$n(n+1)/2$ to n^2	~ n ²
~ n^2 array accesses for the 2-SUM problem		

Back to the 3-SUM problem

Approximately how many array accesses as a function of input size n?

```
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
for (int k = j+1; k < n; k++) {
if (a[i] + a[j] + a[k] == 0) {
count++;
}
}
}
\sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n-1} 3 = 1/2n(n^2 - 3n + 2) \sim n^3 \text{ array accesses.}
```

Lecture 8: Analysis of Algorithms

- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList operations

Types of analysis

- Best case: lower bound on cost.
 - What the goal of all inputs should be.
 - Often not realistic, only applies to "easiest" input.
- Worst case: upper bound on cost.
 - Guarantee on all inputs.
 - Calculated based on the "hardest" input.
- Average case: expected cost for random input.
 - A way to predict performance.
 - Not straightforward how we model random input.

Worst case analysis

- Definition: If f(n)~cg(n) for some constant c > 0, then the order of growth of f(n) is g(n).
 - Ignore leading coefficients.
 - Ignore lower-order terms.
- We will be using the big-Oh (O) notation. For example:
 - ▶ $3n^3 + 2n + 7 = O(n^3)$
 - ▶ $2^n + n^2 = O(2^n)$
 - > 1000 = O(1)
- Yes, $3n^3 + 2n + 7 = O(n^6)$, but that's a rather useless bound.

Common order of growth classifications

- Good news: only a small number of function suffice to describe the order-of-growth of typical algorithms.
- 1: constant
 - Doubling the input size won't affect the running time. Holy-grail.
- log n: logarithmic
 - Doubling the input size will increase the running time by a constant.
- n : linear
 - Doubling the input size will result to double the running time.
- n log n : linearithmic
 - Doubling the input size will result to a bit longer than double the running time.
- n^2 : quadratic
 - Doubling the input size will result to four times as much running time.
- n^3 : cubic
 - Doubling the input size will result to eight times as much running time.
- ► 2ⁿ: exponential
 - When you increase the input by some constant amount, the time taken is doubled.
- ► *n*!: factorial
 - Running time grows exponentially with the size of the input.

From slowest growing to fastest growing

▶ $1 < \log n < n < n \log n < n^2 < n^3 < 2^n < n!$

Common order of growth classifications

Order-of-growth	Name	Example code	T(n)/T(n/2)
1	Constant	a[i]=b+c	1
log n	Logarithmic	while(n>1){n=n/2;}	~ 1
n	Linear	for(int i=0; i <n; i++)<="" td=""><td>2</td></n;>	2
n log n	Linearithmic	<pre>for (i = 1; i <= n; i++){ int x = n; while (x > 0) x -= i; }</pre>	~ 2
n^2	Quadratic	for(int i=0; i <n; for(int="" i++)="" j="0;" j++){<="" j<n;="" td="" {=""><td>4</td></n;>	4
n ³	Cubic	<pre>for(int i=0; i<n; for(int="" i++)="" j="0;" j++){="" j<n;="" k="0;" k++){<="" k<n;="" pre="" {=""></n;></pre>	8

Useful approximations

- Harmonic sum: $H_n = 1 + 1/2 + 1/3 + \ldots + 1/n$ ~ $\ln n$
- Triangular sum: $1 + 2 + 3 + ... + n \sim n^2$
- Geometric sum: $1 + 2 + 4 + 8 + ... + n = 2n 1 \sim n$, when *n* power of 2.
- Binomial coefficients: $\binom{n}{k} \sim \frac{n^k}{k!}$ when k is a small constant.
- Use a tool like Wolfram alpha.

Lecture 8: Analysis of Algorithms

- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList Operations

Worst-case performance of add() is O(n)

- Cost model: 1 for insertion, n for copying n items to a new array.
 Worst-case: If ArrayList is full, add() will need to call resize to create a new array of double the size, copy all items, insert new one.
 Total cost: n + 1 = O(n).
- Realistically, this won't be happening often and worst-case analysis can be too strict. We will use <u>amortized time analysis</u> instead.

Amortized analysis

Amortized cost per operation: for a sequence of n operations, it is the total cost of operations divided by n.

Amortized analysis for *n* add() operations

As the ArrayList increases, doubling happens half as often but costs twice as much.
O(total cost)= ∑("cost of insertions") + ∑("cost of copying")
∑("cost of insertions") = n.
∑("cost of copying") = 1 + 2 + 2² + ...2^[log₂n] ≤ 2n.
O(total cost) ≤ 2n therefore expertised cost is ≤ ³ⁿ/_{3n} = 2 = O[±](1), but "hyperpresent".

• $O(\text{total cost}) \leq 3n$, therefore amortized cost is $\leq \frac{3n}{n} = 3 = O^+(1)$, but "lumpy".

Amortized analysis for n add() operations when increasing ArrayList by 1.

- $\sum_{n \in \mathbb{N}} (\text{"cost of insertions"}) = n.$ $\sum_{n \in \mathbb{N}} (\text{"cost of copying"}) = 1 + 2 + 3 + \ldots + n 1 = n(n 1)/2.$
- O(total cost) = n + n(n-1)/2 = n(n+1)/2, therefore amortized cost is (n+1)/2 or $O^{+}(n).$
- Same idea when increasing ArrayList size by a constant.
 - *This is why in the lab on Friday, we saw that doubling was the fastest and linear(1) the slowest.

Lecture 8: Analysis of Algorithms

- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of ArrayList operations

Readings:

- Recommended Textbook:
 - Chapter 1.4 (pages 172-205)
- Recommended Textbook Website:
 - Resizable arrays (arraylists): <u>https://algs4.cs.princeton.edu/13stacks/</u>
- Analysis of Algorithms: <u>https://algs4.cs.princeton.edu/14analysis/</u>
 Code
- Lecture 8 code

Practice Problems:

1.4.1-1.4.9, 1.4.32, 1.4.35-1.4.36