
CS62
DATA STRUCTURES AND ADVANCED PROGRAMMING

6: Interfaces and Generics

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Interfaces and Generics

▸ Interfaces

▸ Background

▸ Generics

2

INTERFACES

Interfaces

▸ Contracts of what a class must do, not how to do it, abstracting
from implementation.

▸ In Java, an interface is a reference type (like a class), that
contains abstract methods and default methods.

▸ A class that implements an interface is obliged to implement its
abstract methods.

▸ Interfaces cannot be instantiated (no new keyword). They can
only be implemented by classes or extended by other
interfaces.

3

INTERFACES

Example

public interface Enrollable{
 void enrollInCourse(String course);
 void withdrawFromCourse(String course);
 void viewCourseSchedule();

 default int getMaxCredits(){
 return 4;
 }
}

4

INTERFACES

Example

class PomonaStudent implements Enrollable{

…
 public void enrollInCourse(String course) {
 // implementation
 }

 public void withdrawFromCourse(String course) {
 // implementation
 }

 public void viewCourseSchedule() {
 // implementation
 }

5

INTERFACES

Example

class FourthYearPomonaStudent extends PomonaStudent{

…
 public int getMaxCredits(){
 return 6;
 }
}

6

INTERFACES

Interfaces

▸ A class can implement multiple interfaces.

▸ class A implements Interface1, Interface2{…}

▸ An interface can extend multiple interfaces.

▸ public interface GroupedInterface extends
Interface1,Interface2{…}

7

INTERFACES

PRACTICE TIME - Worksheet

8

▸ Create an interface called Adoptable that contains four
abstract methods: a void requestAdoption(),
boolean isAdopted(), void completeAdoption(),
and String makeHappyNoise().

▸ Have the class Animal implement the interface. You can
provide some very minimal implementation of the
methods so that you don’t receive a compile-time error.

▸ Override the makeHappyNoise() in the Cat and Dog
subclasses.

INTERFACES

ANSWER

9

public interface Adoptable {

 void requestAdoption(); // Method to initiate the adoption process

 boolean isAdopted(); // Method to check if the animal has been adopted

 void completeAdoption(); // Method to finalize the adoption

 String makeHappyNoise(); // Method that returns a happy noise the adopted animal makes

}

public class Animal implements Adoptable {

 …

 public void requestAdoption() {

 // Implementation for an animal's adoption request

 }

 public boolean isAdopted() {

 return adopted;

 }

 public void completeAdoption() {

 // Implementation to finalize the adoption for an animal

 adopted = true;

 }

 public String makeHappyNoise(){

 return "I was adopted hooray!";

 }

INTERFACES

ANSWER

10

public class Cat extends Animal{

 …

 public String makeHappyNoise(){

 return "I am a happy cat!";

 }

}

public class Dog extends Animal{

 …

 public String makeHappyNoise(){

 return "I am a happy dog!";

 }

}

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Interfaces and Generics

▸ Interfaces

▸ Background

▸ Generics

11

BACKGROUND

Why do we need data structures?

▸ To organize and store data so that we can perform efficient operations on them based on our
needs.

▸ Imagine walking to an unorganized library and trying to find your favorite title or books
from your favorite author.

▸ We can define efficiency in different ways.

▸ Time: How fast can we perform certain operations on a data structure?

▸ Space: How much memory do we need to organize our data in a data structure?

▸ There is no data structure that fits all needs.

▸ That’s why we’re spending a semester looking at different data structures.

▸ So far, the only data structure we have encountered is arrays.

▸ And ArrayList, but informally.

12

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

BACKGROUND

Types of operations on data structures

▸ Insertion: adding a new element in a data structure.

▸Deletion: Removing (and possibly returning) an element.

▸Searching: Searching for a specific data element.

▸Replacement: Replacing an existing element with a new one (and possibly returning old).

▸Traversal: Going through all the elements.

▸Sorting: Sorting all elements in a specific way.

▸Check if empty: Check if data structure contains any elements.

▸Not a single data structure does all these things efficiently.

▸You need to know both the kind of data you have, the different operations you will need to
perform on them, and any technical limitations to pick an appropriate data structure.

13

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

BACKGROUND

Linear vs non-linear data structures

▸ Linear: elements arranged in a linear sequence based on a specific order.

▸ E.g., Arrays, ArrayLists, linked lists, stacks, queues.

▸ Linear memory allocation: all elements are placed in a contiguous block
of memory. E.g., arrays and ArrayLists.

▸ Use of pointers/links: elements don’t need to be placed in contiguous
blocks. The linear relationship is formed through pointers. E.g., singly and
doubly linked lists.

▸ Non-linear: elements arranged in non-linear, mostly hierarchical relationship.

▸ E.g., trees and graphs.

14

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Interfaces and Generics

▸ Interfaces

▸ Background

▸ Generics

15

GENERICS

List interface

▸ We want any list-based data structure to support adding
elements, removing them, indexing the data structure to
support adding, replacing, and removing an element at a
specific index.

▸ We will build an interface List that forces any data structure
that implements it to implement these operations.

16

GENERICS

Lists should support any type of element

▸ We want our data structure to support any type of
elements, as long as they are of the same type. We could
use the class Object but this requires casting to the
desired type:

 List list = new ArrayList();
 list.add("hello");
 String s = (String) list.get(0);

▸ Instead, we will use generics.

17

GENERICS

Generics

public interface List <E> {
 void add(E element);
 void add(int index, E element);
 void clear();
 E get(int index);
 boolean isEmpty();
 E remove();
 E remove(int index);
 E set(int index, E element);
 int size();
}
public class ArrayList<E> implements List<E>{

▸ In the invocation, all occurrences of the formal type parameters are replaced by the
actual type argument

▸ List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

18

Formal type parameters

GENERICS

Generics

▸ Generics enable types (that is classes and interfaces) to be
used as parameters when defining classes, interfaces, and
methods.

▸ E: element (common in data structures), T: type, K: key, V:
value, N: number.

▸ The additional advantage is that bugs are now caught at
compile time instead of runtime (much easier to fix!)

19

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Interfaces: https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

▸ Generics: https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html

20

Worksheet
▸ Lecture 6 worksheet

Code
▸ Lecture 6 code

https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html
https://cs.pomona.edu/classes/cs62/worksheets/Lecture6_worksheet.pdf
https://github.com/pomonacs622024sp/code/tree/main/Lecture6

