
CS62
DATA STRUCTURES AND ADVANCED PROGRAMMING

5: Inheritance

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Inheritance

▸ Inheritance

2

INHERITANCE
package registrar;

class PomonaStudent {

 private String name;

 private String email;

 private int id;

 private String major;

 private static int studentCounter;

 protected PomonaStudent(String name, String email, int id){

 this.name = name;

 this.email = email;

 this.id = id;

 studentCounter++;

 major = "Undeclared";

 }

 //protected setters getters

 protected int getMaxCredits(){

 return 4;

 }

 public String toString(){

 return “Pomona Student Info - Name: " + name + "\nemail: " + email + "\nid: " + id + "\n";

 }

}

3

INHERITANCE

Students across different years have some unique characteristics

▸ First-year students take ID1

▸ Fourth-year students write a thesis

▸ Second-year students and above can take 6 credits

▸ Transfer students take 1 PE class instead of 2, etc.

▸ But they still are Pomona students so the basic information
we would need about them doesn’t change.

4

INHERITANCE

Inheritance

▸ When you want to create a new class and there is already a class that
includes some of the code that you want, you can derive your new class
from the existing class. In doing this, you can reuse the variables and
methods of the existing class without having to write (and debug!) them
yourself.

▸ A class that is derived from another is called a subclass or child class.

▸ The class from which the subclass is derived is called a superclass or parent
class.

▸ Single inheritance: A class can only extend ONE AND ONLY one parent
class.

▸ Multilevel inheritance: A class can extend a class which extends a class etc.

5

INHERITANCE

Inheritance

‣ The subclass inherits all the public and protected members.

‣ Not the private ones, although it can access them with
appropriate getters and setters.

‣ The inherited fields can be used directly, just like any other
fields.

‣ You can write a new instance method in the subclass that has
the same signature as the one in the superclass, thus overriding
it.

6

INHERITANCE

All classes inherit class Object

‣ Directly if they do not extend any other class, or indirectly as descendants.

‣ Object class has built-in methods that are inherited.

‣ public boolean equals (Object other)

‣ Default behavior uses == returns true only if this and other are located in same memory location.

‣ Works fine for primitives but not objects. We would need to override it (more later).

‣ public String toString()

‣ Returns string representation of object – default is hexadecimal hash of memory location.

‣ Does NOT print the string.

‣ Typically needs to be overridden to be useful.

‣ public int hashCode()

‣ Unique identifier defined so that if a.equals(b) then a, b have same hash code (more later).

‣

7

INHERITANCE

super keyword

‣ Refers to the direct parent of the subclass.

‣ super.instanceMethod(): for overridden methods.

‣ super(args): to call the constructor of the super class.
First line in constructor of subclass.

8

INHERITANCE

package registrar;

class FirstYearPomonaStudent extends PomonaStudent{

 private String id1;

 private static int firstYearCounter;

 protected FirstYearPomonaStudent(String name, String email, int id, String id1){

 super(name, email, id);

 this.id1 = id1;

 firstYearCounter++;

 }

 //getters and setters

 public String toString(){

 return super.toString() + “First-Year Student Attending ID1: " + id1;

 }

}

9

INHERITANCE
package registrar;

class SecondYearPomonaStudent extends PomonaStudent{

 private static int secondYearCounter;

 protected SecondYearPomonaStudent(String name, String email, int id){

 super(name, email, id);

 secondYearCounter++;

 }

 protected int getMaxCredits(){

 return 6;

 }

 public String toString(){

 return super.toString() + “Second-Year Student can Take: " + getMaxCredits() +" credits";

 }

}

10

INHERITANCE
package registrar;

class FourthYearPomonaStudent extends PomonaStudent{

 private String thesisTitle;

 private static int fourthYearCounter;

 protected FourthYearPomonaStudent(String name, String email, int id, String thesisTitle){

 super(name, email, id);

 this.thesisTitle = thesisTitle;

 }

 //getters and setters

 protected int getMaxCredits(){

 return 6;

 }

 public String toString(){

 return super.toString() + "Fourth-Year Student Writing Thesis on: " + thesisTitle;

 }

}

11

INHERITANCE

PRACTICE TIME - Worksheet

‣ While extending your animal rescue application to include a Cat class you
discover that cats and dogs have a lot of common characteristics the shelter
cares about (let’s say name, age, daysInRescue) and that some of that
information could be saved in a parent class Animal instead that both Dog and
Cat would extend.

‣ From your research, you know that people who search to adopt dogs care about
their breed while people who search to adopt cats care about their fur length.

‣ Write three classes, Animal, Dog, Cat, with the appropriate instance variables,
constructors, counters, and toString methods.

‣ Put the classes in a package and choose the right access modifier for your fields
and methods.

12

INHERITANCE

Overriding methods

FirstYearPomonaStudent s1 = new
FirstYearPomonaStudent("daniel", "daniel@pom.edu", 1, "War and
Peace");

System.out.println(s1);

}

‣ Will print

Pomona Student Info - Name: daniel

email: daniel@pomona.edu

id: 1

13

INHERITANCE

Polymorphism
FirstYearPomonaStudent student1 = new FirstYearPomonaStudent("daniel",
"daniel@pomona.edu", 1, "War and Peace");

SecondYearPomonaStudent student2 = new SecondYearPomonaStudent("archita",
"archita@pomona.edu", 3);

FourthYearPomonaStudent student3 = new FourthYearPomonaStudent("antonis",
"antonis@pomona.edu", 6, "Savoir Vivre Around the World");

PomonaStudent[] students = new PomonaStudent[3];

students[0] = student1;

students[1] = student2;

students[2] = student3;

for(PomonaStudent student: students){

 System.out.println(student); //appropriate overriden toString method

 //student.getID1(); //would not work; not a method of the super class

}

14

INHERITANCE

Polymorphism

‣ ParentClass obj = new ChildClass(); E.g.,

PomonaStudent student7 = new FirstYearPomonaStudent("alex",
"alex@pomona.edu", 1, "Humans through the eyes of technology”);

System.out.println(student7.getMaxCredits());

‣ Will print 4

 student7 = new SecondYearPomonaStudent(student7.getName(),
student7.getEmail(), student7.getId());

‣ Will print 6

15

INHERITANCE

Hiding vs overriding

‣ Overriding: For instance methods this is determined at runtime.

‣ One form of polymorphism (dynamic) .

‣ Static polymorphism happens when we overload methods.

‣ Hiding: For variables (instance+static) and methods (static) that
appear in both super and subclass, this is determined at compile-
time. Be careful!

‣ You will get a compile-time error if you attempt to change an
instance method in the superclass to a static method in the
subclass and vice-versa.

16

INHERITANCE

Example: Animal

public class Animal {

 public int legs = 2;

 public static String species = "Animal";

 public static void testStaticMethod() {

 System.out.println("The static method in Animal");

 }

 public void testInstanceMethod() {

 System.out.println("The instance method in Animal");

 }

}

17

INHERITANCE

Example: Cat

public class Cat extends Animal {

 public int legs = 4;

 public static String species = "Cat";

 public static void testStaticMethod() {

 System.out.println("The static method in Cat");

 }

 public void testInstanceMethod() {

 System.out.println("The instance method in Cat");

 }

}

18

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Cat myCat = new Cat();
 myCat.testStaticMethod(); //invoking a hidden method
 myCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(myCat.legs); //accessing a hidden field
 System.out.println(myCat.species); //accessing a hidden field
}

‣ Output:

The static method in Cat
The instance method in Cat
4
Cat

WHAT YOU WERE EXPECTING, RIGHT?

19

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Animal yourCat = new Cat();
 yourCat.testStaticMethod(); //invoking a hidden method
 yourCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(yourCat.legs); //accessing a hidden field
 System.out.println(yourCat.species); //accessing a hidden field
}

‣ Output:

The static method in Animal
The instance method in Cat
2
Animal

!!!

20

INHERITANCE

PRACTICE TIME

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

1. Which method overrides a method in the superclass?

2. Which method hides a method in the superclass?

3. What do the other methods do?

21

INHERITANCE

ANSWER

1. methodTwo.

2. methodFour.

3. They cause compile-time errors.
methodOne: “This static method cannot hide the instance method from
ClassA”.
methodThree: “This instance method cannot override the static method from
ClassA”.

22

INHERITANCE

final keyword

‣ Variable: only assigned once in its declaration or in
constructor — its value cannot be changed after
initialization.

‣ E.g., static final int PI = 3.14;

‣ Method: cannot be overridden by subclass.

‣ Class: cannot be extended.

23

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Inheritance

▸ Inheritance

24

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Inheritance: https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

25

Worksheet
▸ Lecture 5 worksheet

Code
▸ Lecture 5 code

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
https://cs.pomona.edu/classes/cs62/worksheets/Lecture5_worksheet.pdf
https://github.com/pomonacs622024sp/code/tree/main/Lecture5

