
CS62
DATA STRUCTURES AND ADVANCED PROGRAMMING

3: Classes and Objects

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Classes and Objects

▸ Classes and Objects

2

Some slides adopted from Princeton C0S226 course, Algorithms, 4th Edition, Oracle, and w3schools tutorials

CLASSES AND OBJECTS

A hypothetical scenario

▸ We want to write a program for the Office of Registrar to organize information about Pomona students.

▸ Let’s think of what information we would need about a Pomona student. E.g.,:

▸ Name

▸ Email

▸ Pomona ID

▸ The year they entered Pomona

▸ Academic standing

▸ Classes they are currently enrolled in

▸ How many credits they have taken so far

▸ Have they graduated

▸ Etc.

CLASSES AND OBJECTS

What can we do so far?

▸ Name -> String

▸ Email -> String

▸ Pomona ID -> int or String

▸ The year they entered Pomona -> int

▸ Academic standing -> String

▸ Classes they are currently enrolled in -> String[]

▸ How many credits they have taken so far -> int

▸ Have they graduated -> boolean

CLASSES AND OBJECTS

But this was for ONE student

▸ Would we need to make a variable for every single student at
Pomona?

▸ And how can we logically organize them together so that it is clear
which variables correspond to which student?

▸ What if we need to change information about a student?

▸ What if we want to distinguish between unique information (e.g.,
name) and shared information across all students (e.g., current
semester)?

▸ Our code just doesn’t scale up.

CLASSES AND OBJECTS

Object-oriented programming to the rescue

▸ Objects: logical bundles of software of related state (data) and
behavior (procedures working on that data).

▸ State: the individual characteristics stored in variables (or fields).

▸ e.g., name, ID, year entered Pomona, etc.

▸Behavior: methods operate on internal state of objects and serve
as the primary mechanism for object-to-object communication.

▸Determine academic standing based on student’s credits and
GPA, award them Latin Honors based on GPA, etc.

CLASSES AND OBJECTS

Class

▸A blueprint or prototype from which objects are created.

▸An object is an instance of a class and the process of creating
it is called instantiation.

▸ In our example, a class would be a general recipe for what
defines a Pomona student in general terms. An object would
be an actual student whose information we specified based
on that general recipe.

7

CLASSES AND OBJECTS

Declaring a class

public class ClassName {

 // variables (state)

 // methods (behavior)

}

▸ The class body is surrounded by curly braces.

▸Class name is a noun and capitalized by convention.

8

CLASSES AND OBJECTS

Writing our first class

▸Make a PomonaStudent.java file and within it write a
PomonaStudent class:

public class PomonaStudent {

}

9

CLASSES AND OBJECTS

Writing our first class - variables we will need for every student

10

public class PomonaStudent {

 String name;
 String email;
 int id;
 int yearEntered;
 String academicStanding;
 String[] enrolledClasses;
 boolean graduated;

}

CLASSES AND OBJECTS

PRACTICE TIME - Worksheet

11

▸Assume you are writing a big application that an animal
rescue will use to keep track of the pets it shelters.

▸ You have determined you want to make one class for each
type of pet.

▸Define a class Dog and declare variables that correspond to a
dog’s name, breed, age, days spent in rescue, vaccine names
it has received so far, and whether it has been adopted.

CLASSES AND OBJECTS

ANSWER - Worksheet

12

public class Dog{

 String name;

 String breed;

 int age;

 int daysInRescue;

 String[] vaccines;

 boolean adopted;

}

CLASSES AND OBJECTS

Instantiating objects

13

▸ To instantiate a new object use the new keyword. E.g.,

▸ PomonaStudent student1 = new PomonaStudent();

▸Once you have instantiated an object, you can change its
state through the dot operator. E.g.,

▸ student1.name = "Ravi Kumar";

▸ student1.email = “rkjc2023@mypomona.edu";

CLASSES AND OBJECTS

Instantiating objects

14

▸We typically (but not always) instantiate objects in the main
method of a class. E.g.,

public static void main(String args[]){

 PomonaStudent student1 = new PomonaStudent();

 student1.name = "Ravi Kumar";

 student1.email = "rkjc2023@mypomona.edu";

 student1.id = 1234;

}

CLASSES AND OBJECTS

Constructors

15

▸We can also initialize fields during instantiation.

▸ To do, we will need a special type of method, a constructor.

▸Constructors are methods that have the same name with the class and can take 0 or more
parameters that typically correspond to all or a subset of the variables. E.g.,

public PomonaStudent(String studentName, String studentEmail, int studentId){

 name = studentName;

 email = studentEmail;

 id = studentId;

}

▸We can now instead write:

PomonaStudent student2 = new PomonaStudent("Ravi Kumar”, "rkjc2023@mypomona.edu", 1234);

arguments
parameters

CLASSES AND OBJECTS

Constructors

16

▸ If we don’t specify a constructor, Java makes implicitly one for us, the zero-argument
constructor.

▸All variables are initialized to their default value, i.e.,

▸ int->0

▸ double ->0.0

▸ boolean -> false

▸ and any object reference (e.g., String or an array) is set to null.

▸ The no-argument constructor is what we invoked before:

▸ PomonaStudent student1 = new PomonaStudent();

▸Once we specify a constructor, we HAVE to explicitly create a no-argument constructor; our
code above would stop working otherwise.

CLASSES AND OBJECTS

Overloading constructors

17

▸We can have more than one constructors that specify different ways that
an object of our class can be instantiated.

▸ E.g., a different constructor could only initialize a student’s name upon
instantiation. i.e.:

public PomonaStudent(String studentName) {

name = studentName;

}

▸ This is known as overloading. Java knows which constructor you mean to
use by matching the number, type, and order of arguments you are
passing to the equivalent parameters.

CLASSES AND OBJECTS

Instance variables

18

▸Once we have instantiated an object, we can access its instance (or
member) variables using the dot operator. E.g.,

public static void main(String args[]){

 PomonaStudent student2 = new PomonaStudent("Ravi Kumar”, "rkjc2023@mypomona.edu", 1234);

 System.out.println(student2.name); //prints Ravi Kumar

 student2.name = "Alexandra Papoutsaki”;

 System.out.println(student2.name); //prints Alexandra Papoutsaki

▸We cannot access instance variables without specifying the object. For
example:

public static void main(String args[]){

 System.out.println(name); //won’t compile, WHOSE name???

CLASSES AND OBJECTS

this keyword

19

public PomonaStudent(String studentName, String studentEmail, int studentId){

 name = studentName;

 email = studentEmail;

 id = studentId;

}

▸ The keyword this refers to the current object. We can use it to differentiate
between instance variables and parameters.

public PomonaStudent(String name, String email, int id){

 this.name = name;

 this.email = email;

 this.id = id;

}

parameters

Instance

variables

Instance

variables parameters

CLASSES AND OBJECTS

Initializing arrays

20

▸ When initializing an array, e.g., String[] enrolledClasses; we have two options:

▸ We could initialize them using the curly braces, e.g.,

▸ enrolledClasses = {"CSCI062", "PHYS051", "ANTH124", "PE050",
“HIST032"};

▸ Or, we could just determine the storing capacity and reserve a fixed space in memory, e.g.,

▸ enrolledClasses = new String[6];

▸ This will reserve 6 spots in memory (counting at 0…5)

▸ enrolledClasses.length will be 6.

▸ Until we specify what values each index will hold, they will all have the default value of the
type the array holds, e.g.,

▸ enrolledClasses will hold[null,null,null,null,null,null]

CLASSES AND OBJECTS

PomonaStudent class so far

21

public class PomonaStudent {

 String name;
 String email;
 int id;
 int yearEntered;
 String academicStanding;
 String[] enrolledClasses;
 boolean graduated;

 public PomonaStudent(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 enrolledClasses = new String[6];
 }

}

CLASSES AND OBJECTS

PRACTICE TIME - Worksheet

22

▸Add a constructor to your Dog class so that you initialize its
name, breed, and age. You can assume that dogs receive 6
vaccines maximum. Use the keyword this.

CLASSES AND OBJECTS

ANSWER - Worksheet

23

public class Dog{

 String name;
 String breed;
 int age;
 int daysInRescue;
 String[] vaccines;
 boolean adopted;

 public Dog(String name, String breed, int age){
 this.name = name;
 this.breed = breed;
 this.age = age;
 vaccines = new String[6];
 }
}

CLASSES AND OBJECTS

PRACTICE TIME - Worksheet

24

▸Define a main method and within it instantiate two objects of
type Dog. Initialize their name, age, and breed to whatever
you choose.

▸Once you instantiate the two Dog objects, initialize their days
in rescue to whatever number you want.

CLASSES AND OBJECTS

ANSWER - Worksheet

25

public class Dog{

 String name;
 String breed;
 int age;
 int daysInRescue;
 String[] vaccines;
 boolean adopted;

 public Dog(String name, String breed, int age){
 this.name = name;
 this.breed = breed;
 this.age = age;
 vaccines = new String[6];
 }

 public static void main(String[] args){
 Dog dog1 = new Dog("Rex", "German Shepherd", 3);
 Dog dog2 = new Dog("Lassie", "Rough Collie", 7);
 dog1.daysInRescue = 3;
 dog2.daysInRescue = 47;
 }

}

CLASSES AND OBJECTS

Instance methods

26

‣ A collection of grouped statements that perform a logical operation and control the behavior of objects.

‣ By convention method names should be a verb (+ noun) in lowercase.

‣ Syntax: access modifier returnType methodName(type parameter-name,…){…}. E.g.,

‣ public int getYearEntered(){return yearEntered;}

‣ Method signature: method name and the number, type, and order of its parameters.

‣ Control goes back to the calling program as soon as a return statement is reached. If it does not return
anything it is void. E.g.,

‣ public void printName(){System.out.println(name);}

‣ Can be overloaded (same name, different number, type, or order of parameters). This is common for
constructors.

‣ Invoked using the dot operator, e.g.,

‣ student1.printName();

CLASSES AND OBJECTS

PomonaStudent class so far

27

public class PomonaStudent {

 String name;
 String email;
 int id;
 int yearEntered;
 String academicStanding;
 String[] enrolledClasses;
 boolean graduated;

 public PomonaStudent(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 enrolledClasses = new String[6];
 }
 public int getYearEntered(){
 return yearEntered;
 }

 public void setYearEntered(int yearEntered){
 this.yearEntered = yearEntered;
 }

}

CLASSES AND OBJECTS

Static variables and methods

28

‣ Static (or class) variables are variables shared across all objects. E.g.,

‣ static int studentCounter;

‣ Can be accessed through the class name, without needing to instantiate an object. E.g.,

‣ System.out.println(PomonaStudent.studentCounter);

‣ When a method only accesses static variables then it can be defined as static. E.g.,

static void graduateAllStudents(){

studentCounter = 0;

}

CLASSES AND OBJECTS

PomonaStudent class so far

29

public class PomonaStudent {

 String name;
 String email;
 int id;
 int yearEntered;
 String academicStanding;
 String[] enrolledClasses;
 boolean graduated;

 static int studentCounter;

 public PomonaStudent(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 enrolledClasses = new String[6];
 studentCounter++;
 }
 public int getYearEntered(){
 return yearEntered;
 }

 public void setYearEntered(int yearEntered){
 this.yearEntered = yearEntered;
 }

}

CLASSES AND OBJECTS

PRACTICE TIME - Worksheet

30

▸Add a dog counter in your Dog class.

▸Update its constructor to increase the counter by one every
time a new Dog object is created.

▸Write an adopt method that updated the dog’s adoption
status and decreases the counter of dogs.

CLASSES AND OBJECTS

ANSWER - Worksheet

31

public class Dog{

 String name;
 String breed;
 int age;
 int daysInRescue;
 String[] vaccines;
 boolean adopted;

 static int dogCounter;

 public Dog(String name, String breed, int age){
 this.name = name;
 this.breed = breed;
 this.age = age;
 vaccines = new String[6];
 dogCounter++;
 }

 public void adopt(){
 adopted = true;
 dogCounter--;
 }

CLASSES AND OBJECTS

Data Hiding

32

▸Core concept in Object-Oriented Programming.

▸We encapsulate data and related methods in one class and
we restrict who can see and modify data.

▸ For example, FERPA protects the privacy of students so the
Registrar cannot share their academic record freely, even if
its their parents who request it.

▸ Java uses access modifiers to set the access level for classes,
variables, methods and constructors.

CLASSES AND OBJECTS

Access Modifiers

33

▸ You are already familiar with the public keyword. E.g., public class PomonaStudent.

▸ For classes, you can either use public or default:

▸ public: The class is accessible by any other class. E.g.,

▸ public class PomonaStudent

▸ default: The class is only accessible by classes in the same package (think of it as in the same folder. More
later). This is used when you don't specify a modifier. E.g.,

▸ class PomonaStudent

▸ For variables, methods, and constructors, you can use any of the following:

▸ public: the code is accessible by any other class

▸ private: The code is only accessible within the declared class

▸ default: The code is only accessible in the same package. This is used when you don't specify a modifier

▸ protected: The code is accessible in the same package and subclasses (More later).

CLASSES AND OBJECTS

Data Hiding

34

▸ To follow the concept of data hiding, we define variables as
private.

▸We provide more lax (i.e. default, protected, or
public) getter and setter methods to access and update the
value of a private variable.

CLASSES AND OBJECTS

PomonaStudent class so far

35

public class PomonaStudent {

 private String name;
 private String email;
 private int id;
 private int yearEntered;
 private String academicStanding;
 private String[] enrolledClasses;
 private boolean graduated;
 private static int studentCounter;

 String getName() {
 return name;
 }

 void setName(String name) {
 this.name = name;
 }

 String getEmail() {
 return email;
 }

 void setEmail(String email) {
 this.email = email;
 }
…

CLASSES AND OBJECTS

PRACTICE TIME - Worksheet

36

▸Update all of the variables in Dog to private.

▸Define a getter method that returns the days spent in rescue,
and a setter method that updates the days spent in rescue.
What access modifier do you want to provide?

▸Use them to update the days spent in rescue for the two
objects of type Dog you instantiated.

CLASSES AND OBJECTS

ANSWER - Worksheet

37

public class Dog{

 private String name;
 private String breed;
 private int age;
 private int daysInRescue;
 private String[] vaccines;
 private boolean adopted;

 private static int dogCounter;

 public Dog(String name, String breed, int age){
 this.name = name;
 this.breed = breed;
 this.age = age;
 vaccines = new String[6];
 dogCounter++;
 }

 public int getDaysInRescue(){
 return daysInRescue;
 }

 protected void setDaysInRescue(int daysInRescue){
 this.daysInRescue = daysInRescue;
 }

CLASSES AND OBJECTS

String representation of an object

38

▸ If we want to print an object, we must override the method toString. e.g.,

 public String toString(){

 return "Name: " + name + "\nemail: " + email + "\nid: " + id;

 }

 public static void main(String args[]){

 PomonaStudent student1 = new PomonaStudent("Ravi Kumar", "rkjc2023@mypomona.edu", 1234);

 System.out.println(student1);

 }

▸Will print:

▸Name: Ravi Kumar

▸ email: rkjc2023@mypomona.edu

▸ id: 1234

CLASSES AND OBJECTS

PRACTICE TIME - Worksheet

39

▸Add a toString method to your Dog class and return whatever
string representation you think is appropriate for a Dog
object.

CLASSES AND OBJECTS

ANSWER - Worksheet

40

public String toString(){
 return "Name: " + name + "\nBreed: " + breed + "\nAge: " + age;
}

CLASSES AND OBJECTS

Constant variables

41

▸ If you want a variable to be constant, that is its value to
remain unchanged once it is initialized, you can use the
keyword final. E.g.,

▸ final int LEVELS = 5;

▸ It is conventional to capitalize the variable name to convey it
is a constant.

▸ It is common for a final variable to also be static. E.g.,

▸ static final double PI = 3.141592653589793;

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Classes and Objects

▸ Classes and Objects

42

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guide: What Is an Object? What Is a Class?

https://docs.oracle.com/javase/tutorial/java/concepts/index.html

▸ Classes and Objects: https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

43

Practice Problems:

▸ Make a class Cat for the animal rescue program you are building. Consider what variables
(instance or static), methods (instance or static), and constructors you would need. Make
sure to hide any sensitive data.

Code
▸ Lecture 3 code

Worksheet
▸ Lecture 3 worksheet

https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html
https://github.com/pomonacs622024sp/code/tree/main/Lecture3
https://cs.pomona.edu/classes/cs62/worksheets/Lecture3_worksheet.pdf

