
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

23: Shortest Paths

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

GRAPHS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

So far, we have seen how to represent and traverse graphs through DFS and BFS.

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

2

Some slides adopted from Algorithms 4th Edition or COS226

Today we will see an algorithm that will allow us to calculate the shortest path from one vertex to every other vertex in the graph.

Edge-weighted digraph

3INTRODUCTION TO SHORTEST PATHS

▸ Edge-weighted digraph: a digraph where we associate
weights or costs with each edge.

We will work with edge-weighted digraphs, that is digraphs where we associate weights or costs with each edge. For example, the graph on the right only shows vertices
and edges that connect them, but we also maintain a list of the weight for each edge.

Shortest Paths

▸ Shortest path from vertex s to vertex t: a directed path
from s to t with the property that no other such path has
a lower weight (total weight sum of edges it consists).

4INTRODUCTION TO SHORTEST PATHS

A shortest path from vertex s to vertex t is a directed path from s to t with the property that no other such path has a lower weight, i.e., the total weight sum of edges it
consists. (it's ok to have another path with the same total weight). For example, a shortest path from vertex 0 to vertex 6 in the graph above could take us from 0 to 2 to 7
to 3 to 6 with a total cost of 1.51 and no other path will have a lower weight than that.

Shortest Path variants

▸ Single source: from one vertex s to every other vertex.

▸ Single sink: from every vertex to one vertex t.

▸ Source-sink: from one vertex s to another vertex t.

▸ All pairs: from every vertex to every other vertex.

▸ What version is there in your navigation app?

5INTRODUCTION TO SHORTEST PATHS

The problem of finding shortest paths has a lot of variants. For example:

Single source: from one vertex s to every other vertex.

Single sink: from every vertex to one vertex t.

Source-sink: from one vertex s to another vertex t.

All pairs: from every vertex to every other vertex.

What version do you think your navigation app follows? That's right, source-sink, for the most part.

Shortest Paths Assumptions

▸ Not all vertices need to be reachable.

▸ We will assume so in this lecture.

▸ Weights are non-negative.

▸ There are algorithms that can handle negative weights.

▸ Shortest paths are not necessarily unique but they are
simple.

6INTRODUCTION TO SHORTEST PATHS

Let's state some assumptions for our shortest paths problem. Not all vertices need to be reachable (remember reachability refers to the ability to get from one vertex to
another within a graph). Also we will assume that weights are non-negative (although there are algorithms that can handle negative weights). And finally, although shortest
paths are not necessarily unique they have to be simple (a path in a graph which does not have repeating vertices).

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

7

How would we go about modeling this problem?

Weighted directed edge API

▸ public class DirectedEdge

▸ DirectedEdge(int v, int w, double weight)

▸ Constructs a weighted edge from v to w (v->w) with the provided weight.

▸ int from()

▸ Returns vertex source of this edge.

▸ int to()

▸ Returns vertex destination of this edge.

▸ double weight()

▸ Returns weight of this edge.

▸ String toString()

▸ Returns the string representation of this edge.

8API

We will need to introduce the concept of a directed edge, and we will do so with a DirectedEdge class. Its constructor will create a weighted edge from v to w (v->w) with
the provided weight. We should have a weight of getting the source and destination of the edge as well as its weight. And it would be convenient to have a string
representation of the edge.

Weighted directed edge in Java

public class DirectedEdge {
 private final int v;
 private final int w;
 private final double weight;

 public DirectedEdge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int from() {
 return v;
 }

 public int to() {
 return w;
 }

 public double weight() {
 return weight;
 }

9API

This is truly simple to code!

Edge-weighted digraph API

▸ public class EdgeWeightedDigraph

▸ EdgeWeightedDigraph(int v)

▸ Constructs an edge-weighted digraph with v vertices.

▸ void addEdge(DirectedEdge e)

▸ Add weighted directed edge e.

▸ Iterable<DirectedEdge> adj(int v)

▸ Returns edges adjacent from v.

▸ int V()

▸ Returns number of vertices.

▸ int E()

▸ Returns number of edges.

▸ Iterable<DirectedEdge> edges()

▸ Returns all edges.

10API

Now we can use the concept of a weighted directed edge to specify the API for an edge-weight digraph. We would need to provide a way of constructing such a digraph
with v vertices. A way to add weighted directed edges as well as get back edges adjacent to v or all edges.

Edge-weighted digraph adjacency list representation

11API

We will again follow the adjacency list representation for edge-weighted digraphs, where now we will hold references to a DirectedEdge object.

Edge-weighted digraph in Java

public class EdgeWeightedDigraph {
 private final int V; // number of vertices in this digraph
 private int E; // number of edges in this digraph
 private ArrayList<ArrayList<DirectedEdge>> adj; // adj.get(v) = adjacency list for v

 public EdgeWeightedDigraph(int V) {
 this.V = V;
 this.E = 0;
 adj = new ArrayList<ArrayList<DirectedEdge>>(V);
 for (int v = 0; v < V; v++)
 adj.add(new ArrayList<DirectedEdge>());
 }
 public void addEdge(DirectedEdge e) {
 int v = e.from();
 int w = e.to();
 adj.get(v).add(e);
 E++;
 }

 public Iterable<DirectedEdge> adj(int v) {
 return adj.get(v);
 }

12API

And that's how we would code such a class in Java. You will notice that the only difference from undirected and directed graphs is that we are working with
DirectedEdges instead of Integers.

Single-source shortest path API

▸ Goal: find shortest path from s to every other vertex in the digraph.

▸ public class SP

▸ SP(EdgeWeightedDigraph G, int s)

▸ Shortest paths from s in digraph G.

▸ double distTo(int v)

▸ Length of shortest path from s to v.

▸ Iterable<DirectedEdge> pathTo(int v)

▸ Returns edges along the shortest path from s to v.

▸ boolean hasPathTo(int v)

▸ Returns whether there is a path from s to v.

13API

That brings us to the API for the single-source shortest path problem which states that our goal is to find the shortest path from s to EVERY other vertex in the digraph.
We can imagine a class SP (for shortest paths) whose constructor takes an edge weighted digraph and the index of the starting vertex and calculates the shortest paths
from s to every other vertex in the digraph. Some convenient methods to provide would be given a vertex, what is the length of the shortest path from s to that vertex, as
well as a method that returns edges along such a path and a method that confirms whether such a path exists at all.

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

14

Now let's talk about some of the properties of the shortest paths problem.

Data structures for single-source shortest paths

▸ Goal: find shortest path from s to every other vertex in the digraph.

▸ Shortest-paths tree (SPT): a subgraph which will be a directed tree
rooted at s which will contain all the vertices reachable from s and
every tree path in the SPT is a shortest path in the digraph.

▸ Representation of shortest paths with two vertex-indexed arrays.

▸ Edges on the shortest-paths tree: edgeTo[v] is the last edge on
a shortest path from s to v.

▸ Distance to the source: distTo[v] is the length of the shortest
path from s to v.

15PROPERTIES

In our effort to find the shortest path from s to every other vertex in the digraph, we will calculate the shortest-paths tree (or SPT for short), which will be a directed tree
rooted at s which will contain all the vertices reachable from s and every tree path in the SPT is a shortest path in the digraph.

We will keep two vertex-indexed arrays. edgeTo will keep the edges on the shortest-paths tree, with edgeTo[v] being the LAST edge on the shortest path from s to v, and
disco which will keep the distance to the source, that is distTo[v] will be the length of the shortest path from s to v.

16PROPERTIES

 public Iterable<DirectedEdge> pathTo(int v) {
 Stack<DirectedEdge> path = new Stack<DirectedEdge>();
 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
 path.push(e);
 }
 return path;
 }

For example, here, we have an edge weighted digraph and you can see the edgeTo and distTo contents for all shortest paths from 0. To help us out return back a full
shorts path from 0 to any vertex, we will use a pathTo method that uses a stack to give us back the edges from a destination vertex to the source vertex s in an iterable
structure.

17PROPERTIES

Edge relaxation

▸ Relax edge e = v->w

▸ distTo[v] is the length of the shortest known path from s to
v.

▸ distTo[w] is the length of the shortest known path from s to
w.

▸ edgeTo[w] is the last edge on shortest known path from s to w.

▸ If e = v->w yields shorter path to w, update distTo[w] and
edgeTo[w].

To calculate the contents of distTo and edgeTo, we will need the concept of edge relaxation. Remember, distTo[v] will store the length of the shortest path from s to v SO
FAR. And similarly, edgeTo[w] will be the last edge of the shortest path from s to w SO FAR. Our ultimate goal, will be that when we are done with our algorithm, we will
have found the overall shortest path. To get there, every time we encounter an edge e from v to w, we will ask whether it yields a shorter path from s to w. If yes, we will
need to update distTo[w] and edgeTo[w].

18PROPERTIES

Edge relaxation

There are two possible outcomes of an edge-relaxation operation. Either the edge is ineligible (as in the example at left, where the distTo[w] so far is 3.3 and going from s
to w through v would actually increase the weight to 3.1+1.3=4.4) and no changes are made, or the edge v->w leads to a shorter path to w (as in the example at the right,
where the best known path from s to w so far costs us 7.2, but if we were to go through v we would instead pay 4.4 which is cheaper) and we updated edgeTo[e] and
distTo[e]

19PROPERTIES

Edge relaxation implementation

private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
}

Implementing edge relaxation is extremely simple. Given an edge, we get the source and destination vertices and we update the distTo and edgeTo arrays for the
destination only if the path through the source is shorter.

20PROPERTIES

Framework for shortest-paths algorithm

▸ Generic algorithm to compute a SPT from s

▸ distTo[v]= for each vertex v.

▸ edgeTo[v]=null for each vertex v.

▸ distTo[s]=0.

▸ Repeat until done:

▸ Relax any edge.

▸ distTo[v] is the length of a simple path from s to v.

▸ distTo[v] does not increase.

∞

Putting it all together, it's not hard to imagine a generic algorithm to compute a SPT from s. We will initiate distTo for every vertex as a very large number, which here I will
represent as infinity, and edgeTo for every vertex as null. The distTo[s] will be obviously 0 :)

We will repeatedly relax any edge until no change is registered. Remember, distTo[v] is the length of a simple path from s to v and distTo[v] does not increase.

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

21

All that can be done systematically using Dijkstra's algorithm.

TEXT 22

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

2

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

The algorithm considers vertices in increasing order of distance from s (let's say for this graph, vertex 0) by looking into the lowest disco values for vertices that are not
part of the SPT. It then adds the vertex to the SPT and relaxes all edges adjacent from that vertex.

Let's take this graph as an example. On the right, you can see the edges and weights which are also indicated on the graph itself.

TEXT 23

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

3

0

4

7

1 3

5

2

6

choose source vertex 0

v distTo[] edgeTo[]

0 0.0 -

1

2

3

4

5

6

7

We start at the source vertex 0, add the vertex to the SPT (marked in red), and set the distTo[0] as 0.0 and the edgeTo[0] as null.

TEXT 24

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

4

4

7

1 3

5

2

6

relax all edges adjacent from 0

9

8

5

0

0

∞

∞

∞

v distTo[] edgeTo[]

0 0.0 -

1

2

3

4

5

6

7

We then consider all adjacent vertices to 0 and relax them. Initially, all have been initialized to infinity. So the distance to them from 0 will be updated since they can all be
relaxed.

TEXT 25

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo

5

4

7

1 3

5

2

6

relax all edges adjacent from 0

9

8

5

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

0

∞

5

0

∞

8

9

We will be updating the table as we go. Now we will consider all vertices that have not been added to the SPT yet (everything but 0 so far) and pick the one with the
smallest distance to s.

TEXT 26

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

7

0

4

7

1 3

5

2

6

choose vertex 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

That would be vertex 1 with a total distance of 5.

TEXT 27

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

8

0

4

7

1 3

5

2

6

relax all edges adjacent from 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

4

15

12

5

∞

∞

8

We can add 1 to the SPT. 1's adjacent vertices are 2, 3, and 7. We will need to relax them by comparing their current distance (infinity, infinity, and 8, respectively) with the
cost we would have to pay if we were to go from 0 to them through 1 (i.e. 5+15=20, 5+12 = 17, and 5+4 = 9).

TEXT 28

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

9

0

4

7

1 3

5

2

6

relax all edges adjacent from 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

4

15

12

✔

∞

∞5

17

20

8

We will update the table for vertices 2 and 3 but not for 7 since paying 9 would be higher than the current cost of going directly to it (8). We will consider all vertices that
are not on SPT yet (all except for 0 and 1) and pick the one with the shortest distance.

TEXT 29

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

11

0

4

7

1 3

5

2

6

choose vertex 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

That would be vertex 7 with a cost of 8. Don't forget to update edgeTo as the last edge to the best known shortest path so far from 0 to that edge.

TEXT 30

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo

12

0

4

7

1 3

5

2

6

relax all edges adjacent from 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

6

7
8

17

Consider the adjacent vertices of 7. These would be 2 and 5 with a cost of 8+7=15 and 8+6 = 14.

TEXT 31

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

13

0

4

7

1 3

5

2

6

relax all edges adjacent from 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

6

7
8

17

∞ 14

15

We will update both vertices with the shorter new total weights. We are ready to move on to the next vertex that is not part of the SPT and has the smallest distance.

TEXT 32

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

15

0

4

7

1 3

5

2

6

select vertex 4

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

That would be vertex 4 for a cost of 9.

TEXT 33

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

16

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

relax all edges adjacent from 4

4

5

20

8

14

9 ∞

4's adjacent vertices are 5, 6, and 7. If we were to go from 0 to them through 4, we would pay 9+4=13, 9+20=29, and 9+5=14, respectively.

TEXT 34

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

17

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

relax all edges adjacent from 4

4

5

20

✔

∞ 29

8

14

9

13

Which means we will update only vertices 5 and 6 (since the cost to 7 is higher than the existing 8). Vertex 4 is now part of the SPT.

TEXT 35

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

19

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

select vertex 5

The next vertex would be 5.

TEXT 36

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

20

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

relax all edges adjacent from 5

1

13

29

13

15

Its adjacent vertices are 2 and 6

TEXT 37

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

21

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

relax all edges adjacent from 5

1

13

29

13

15 14

26

and both are relaxed to new total distances.

TEXT 38

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

23

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

select vertex 2

We then proceed with vertex 2.

TEXT 39

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

24

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

relax all edges adjacent from 2

3

11

26

14

20

its adjacent vertices are 3 and 6

TEXT 40

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

25

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 2

3

11

26

14

20 17

25

and are both relaxed.

TEXT 41

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

27

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

select vertex 3

next vertex is 3

TEXT 42

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

28

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 3

9

3

25

2017

it has only one adjacent vertex, 6,

TEXT 43

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

29

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 3

9

✔

3

25

2017

which won't be relaxed because the cost to go to it from 0 through 3 would be higher than go through 2.

TEXT 44

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

31

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

select vertex 6

Last vertex is 6

TEXT 45

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

32

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

relax all edges adjacent from 6

which happens to not have any adjacent vertices.

TEXT 46

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

34

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Here's our SPT from vertex s and the final arrays distTo and edgeTo.

47DIJKSTRA’S ALGORITHM

Indexed min-priority queue (Section 2.4 in recommended textbook)

▸ Associate an index between 0 and n-1 with each key in a priority queue.

▸ Insert a key associated with a given index.

▸ Delete a minimum key and return associated index.

▸ Decrease the key associated with a given index.

▸ public class IndexMinPQ<Key extends Comparable<Key>>

▸ IndexMinPQ(int n)

▸ Create indexed PQ with indices 0,1,…n-1

▸ void insert(int i, Key key)

▸ Associate key with index i.

▸ int delMin()

▸ Remove a minimal key and return its associated index.

▸ void decreaseKey(int i, Key key)

▸ Decrease the key with index i to the specified value.

How do we go about implementing Dijkstra's algorithm? We will use a min priority queue (essentially a min-heap whose root is the minimum value) and work with
inserting deleting and decreasing keys.

48DIJKSTRA’S ALGORITHM

public class DijkstraSP {
 private double[] distTo; // distTo[v] = distance of shortest s->v path
 private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
 private IndexMinPQ<Double> pq; // priority queue of vertices

 public DijkstraSP(EdgeWeightedDigraph G, int s) {
 distTo = new double[G.V()];
 edgeTo = new DirectedEdge[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 // relax vertices in order of distance from s
 pq = new IndexMinPQ<Double>(G.V());
 pq.insert(s, distTo[s]);
 while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }

 // relax edge e and update pq if changed
 private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert(w, distTo[w]);
 }
 }

We won't really focus on the implementation (we used to have an assignment on this), but you can see that the implementation of Dijkstra's algorithm is not hard.

49DIJKSTRA’S ALGORITHM

Running time depends on PQ implementation

▸ Many variations. Assuming binary heap, running time is
proportional to and extra space.

▸ Cost of insert, delete-min, decrease-key are all .

▸ More complicated version with a Fibonacci heap takes
 time but in practice it’s not worth

implementing.

|E | log |V | |V |

log |V |

O(|E | + |V | log |V |)

We won't do the analysis (stay tuned for CS140) but assuming you use a binary heap, the running time will be proportional to E log V and you will need V extra space (the
cost for insertion, deletion of min and decreasing a key are all logarithmic). There is a fancier version that uses a Fibonacci heap and makes the algorithm faster but it's
not worth implementing.

50DIJKSTRA’S ALGORITHM

Practice Time

▸ Run Dijkstra’s algorithm on the following graph with 0 being the starting
vertex.

0

1 5

7

2 4

3

6

8

5

2

13

3

3

2

6

1

1
2

5

2

6

Let's see whether we understand how the algorithm works. Run Dijkstra’s algorithm on the following graph with 0 being the starting vertex.

51DIJKSTRA’S ALGORITHM

Answer

v distTo[] edgeTo[]

0 0 -

1 6 3->1

2 2 0->2

3 4 2->3

4 5 3->4

5 8 6->5

6 6 4->6

7 11 5->7

0

1 5

7

2 4

3

6

8

5

2

13

3

3

2

6

1

1
2

5

2

6

You should have ended up with this SPT and table.

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

52

And that's all for today where we saw how to solve the shortest paths problem using Dijkstra's algorithm.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 4.4 (Pages 638-676)

▸ Website:

▸ https://algs4.cs.princeton.edu/44sp/

▸ Visualization

▸ https://visualgo.net/en/sssp

53

https://algs4.cs.princeton.edu/44sp/
https://visualgo.net/en/sssp

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem

▸ Run Dijkstra’s algorithm on the following graph with 0
being the starting vertex.

54

ASSIGNED READINGS AND PRACTICE PROBLEMS

Answer

▸ Run Dijkstra’s algorithm on the following graph with 0
being the starting vertex.

55

v distTo[] edgeTo[]

0 0 -

1 8 0->1
2 12 0->2
3 26 2->3
4 46 3->4
5 34 3->5
6 33 3->6
7 38 3->7
8 42 3->8

