CSO62
 DATA STRUCTURES AND ADVANCED PROGRAMMING

20: Left-Leaning Red-Black Trees

Alexandra Papoutsaki she/her/hers

Lecture 20: Left-leaning Red-Black Trees

- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

- Start with standard BSTs which are made up of 2-nodes.
- Add extra information to encode 3-nodes. We will introduce two types of links.
- Red links: bind together two 2-nodes to represent a 3-node.
- Specifically, 3-nodes are represented as two 2-nodes connected by a single red link that leans left (one of the 2-nodes is the left child of the other).
, Black links: bind together the 2-3 tree.
- Advantage: Can use BST code with minimal modification.

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

1-1 correspondence between red-black BSTs and 2-3 trees

Definition

- A left-leaning red-black tree is a BST such that:
- No node has two red links connected to it.
- Red links lean left.
- Every path from root to leaves has the same number of black links (perfect black balance).

Search

- Exactly the same as for elementary BSTs (we ignore the color).
- But runs faster because of better balance.

```
public Value get(Key key) {
    if (key == null) throw new IllegalArgumentException("argument to get() is null");
    return get(root, key);
}
// value associated with the given key in subtree rooted at x; null if no such key
private Value get(Node x, Key key) {
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val;
    }
    return null;
}
- Operations such as floor, iteration, rank, selection are also identical.
```


Representation

- Each node is pointed to by one node, its parent. We can use this to encode the color of the links in nodes.
- True if the link from the parent is red and false if it is black. Null links are black.

```
private static final boolean RED = true;
private static final boolean BLACK = false;
private Node root; // root of the BST
// BST helper node data type
private class Node {
    private Key key;
    private Value val; // associated data
    private Node left, right; // links to left and right subtrees
    private boolean color; // color of parent link
    private int size; // subtree count
```


return x.color == RED;
$\}$

Practice Time

- Which of the following are legal LLRB trees?

Answer
, Which of the following are legal LLRB trees?

- iii and iv
- i is not balanced and ii is also not in symmetrical order

Lecture 20: Left-leaning Red-Black Trees

- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

Left rotation: Orient a (temporarily) right-leaning red link to lean left


```
Node rotateLeft(Node h)
{
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    x.N = h.N;
    h.N = 1 + size(h.left)
                + size(h.right);
    return x;
\}
\}

Left rotate (right link of h)

\section*{Right rotation: Orient a left-leaning red link to a (temporarily) lean right}


Right rotate (left link of h)

\section*{Color flip: Recolor to split a (temporary) 4-node}


Flipping colors to split a 4-node

\section*{Lecture 20: Left-leaning Red-Black Trees}
- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

\section*{Basic strategy: Maintain 1-1 correspondence with 2-3 trees}
- During internal operations, maintain:
, symmetric order
- perfect black balance.
- But we might violate color invariants. For example:
- Right-leaning red link.
- Two red children (temporary 4-node).
- Left-left red (temporary 4-node).
- Left-right red (temporary 4-node).
- To restore color invariant we will be performing rotations and color flips.

\section*{Insertion into a LLRB}
- Do standard BST insertion and color the new link red.
- Repeat until color invariants restored:
- Both children red? Flip colors.
- Right link red? Rotate left.
- Two left reds in a row? Rotate right.

\section*{Red-black BST construction demo}

\section*{red-black BST}


\section*{Implementation}
- Only three cases:
- Right child red; left child black: rotate left.
- Left child red; left-left grandchild red: rotate right.
- Both children red: flip colors.
```

// insert the key-value pair in the subtree rooted at h
private Node put(Node h, Key key, Value val) {
if (h == null) return new Node(key, val, RED, 1);
int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val:
// fix-up any right-leaning links
if (isRed(h.right) \&\& !isRed(h.left)) h = rotateLeft(h);
if (isRed(h.left) \&\& isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) \&\& isRed(h.right)) flipColors(h);
h.size = size(h.left) + size(h.right) + 1;
return h;
}

```

\section*{Visualization of insertion into a LLRB tree}
- 255 insertions in ascending order.

\section*{Visualization of insertion into a LLRB tree}
- 255 insertions in descending order.

\section*{Visualization of insertion into a LLRB tree}
- 255 insertions in random order.

\section*{Practice Time - Worksheet \#20}
- Draw the LLRB tree that results when you insert the keys \(10,18,7,15,16,30,25,40,60\) in that order in an initially empty tree.

ANSWER - Worksheet \#20
- Draw the LLRB tree that results when you insert the keys \(10,18,7,15,16,30,25,40,60\) in that order in an initially empty tree.


\section*{Lecture 20: Left-leaning Red-Black Trees}
- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

\section*{Balance in LLRB trees}
- Height of LLRB trees is \(\leq 2 \log n\) in the worst case.
- Worst case is a 2-3 tree that is all 2-nodes except that the left-most path is made up of 3 -nodes.
- All ordered operations (min, max, floor, ceiling) etc. are also \(O(\log n)\).

\section*{Summary for dictionary operations}
\begin{tabular}{c|c|c|c|c|c|c} 
& \multicolumn{3}{|c|}{ Worst case } & \multicolumn{2}{c}{ Average case } \\
\hline & Search & Insert & Delete & Search & Insert & Delete \\
\hline BST \(n\) & \(n\) & \(n\) & \(\log n\) & \(\log n\) & \(\sqrt{n}\) \\
\hline 2-3 search tree & \(\log n\) \\
\hline
\end{tabular}

\section*{Lecture 20: Left-leaning Red-Black Trees}
- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
, Historical context

Red-black trees
- A dichromatic framework for balanced trees. [Guibas and Sedgewick, 1978].
- Why red-black? Xerox PARC had a laser printer and red and black had the best contrast...
- Left-leaning red-black trees [Sedgewick, 2008]
- Inspired by difficulties in proper implementation of RB BSTs.
- RB BSTs have been involved in lawsuit because of improper implementation.

Balanced trees in the wild
- Red-black trees are widely used as system dictionaries.
- e.g., Java: java.util.TreeMap and java.util.TreeSet.
- Other balanced BSTs: AVL, splay, randomized.
- 2-3 search trees are a subset of b-trees.
- See recommended textbook for more.
- B-trees are widely used for file systems and databases.

\section*{Readings:}
- Recommended Textbook: Chapter 3.3 (Pages 424-447)
- Website:
- https://algs4.cs.princeton.edu/33balanced/
- Visualization:
- https://algs4.cs.princeton.edu/GrowingTree/ (for LLRB trees)

\section*{Worksheet:}
- Lecture 20 worksheet

\section*{Problem 1}
- Draw the left-leaning red-black BST that results when you insert items with the keys \(\mathrm{E}, \mathrm{A}, \mathrm{S}, \mathrm{Y}, \mathrm{Q}, \mathrm{U}, \mathrm{T}, \mathrm{I}, \mathrm{O}, \mathrm{N}\) in that order into an initially empty tree.

\section*{ANSWER 1}
- Draw the left-leaning red-black BST that results when you insert items with the keys \(\mathrm{E}, \mathrm{A}, \mathrm{S}, \mathrm{Y}, \mathrm{Q}, \mathrm{U}, \mathrm{T}, \mathrm{I}, \mathrm{O}, \mathrm{N}\) in that order into an initially empty tree.
```

