
CS62
DATA STRUCTURES AND ADVANCED PROGRAMMING

2: Control Flow and Arrays

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Control Flow and Arrays

▸ Selection

▸ Iteration

▸ Branching

▸ Arrays

▸ Looping through arrays

2

Some slides adopted from Princeton C0S226 course, Algorithms, 4th Edition, Oracle tutorials

SELECTION

if-else if-else statement

▸ The most basic of control flow statements.

▸ Execute a certain section of code only if a particular test evaluates to true. Optionally, if not, execute
another.

▸ Basic syntax:

if (expression){

 statement

}

else if (expression) { //optional, can have many of these

 statement

}

else { //also optional

 statement

}

SELECTION

if-else if-else example

int testscore = 76;

char grade;

if (testscore >= 90) {

 grade = 'A';

} else if (testscore >= 80) {

 grade = 'B';

} else if (testscore >= 70) { //once this is satisfied, the rest of the clauses won’t be evaluated!

 grade = 'C';

} else if (testscore >= 60) {

 grade = 'D';

} else {

 grade = 'F';

}

System.out.println("Grade = " + grade);

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html

SELECTION

PRACTICE TIME: Worksheet Problem 1

▸ You are building a weather report system that prints a message about today’s temperature. While testing you unfortunately
found that it doesn’t quite work right. What will it do and what is the problem?

int temperature = 47;

String message;

if (temperature < 64){

 message = "Too cold";

}

if (temperature >= 64 && temperature <= 75){

 message = "Just perfect";

}

else{

 message = "Too hot";

}

System.out.println(message);

SELECTION

ANSWER: Worksheet Problem 1

▸ It seems we wrote separate if statements instead of if, else if, else if, else. The last if-else statement is the only one that has any effect.
That means that our temperature will satisfy the first test but then we will test again whether it is in the [64, 75] range and since it is
not, we will print that it is too hot. The fix is quite easy:

int temperature = 47;

String message;

if (temperature < 64){

 message = "Too cold";

}

else if (temperature >= 64 && temperature <= 75){

 message = "Just perfect";

}

else{

 message = "Too hot";

}

System.out.println(message);

SELECTION

switch statement

▸ Use instead of writing many if-else statements.

▸ Evaluate expression and compare it with the values of each case

▸ Works with byte, short, char, int, and String.

▸ Basic syntax:

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

SELECTION

switch example
int finger = 4;

switch (finger) {

 case 1:

 System.out.println("thumb");

 break;

 case 2:

 System.out.println("index");

 break;

 case 3:

 System.out.println("middle");

 break;

 case 4:

 System.out.println("ring");

 break;

 case 5:

 System.out.println("pinky");

 break;

 default:

 System.out.println("Not a valid number”);

}

SELECTION

break and default

▸ When Java reaches a break keyword, it breaks out of the
switch block and does not execute the rest of the code.

▸ You need to add a break statement otherwise you will
go through all the remaining cases!

▸ The default keyword specifies what code to run if there
is no case match.

SELECTION

What would happen if we didn’t include break?
int finger = 2;

switch (finger) {

 case 1:

 System.out.println("thumb");

 case 2:

 System.out.println("index");

 case 3:

 System.out.println("middle");

 case 4:

 System.out.println("ring");

 case 5:

 System.out.println("pinky");

 default:

 System.out.println("Not a valid number");

It Will print :

index

middle

ring

pinky

Not a valid number

SELECTION

Ternary operator

▸ ?: A conditional operator that is a shorthand for the if-else statement.

▸ Basic syntax:

variable = expression1 ? expression2: expression3

▸ Equivalent to:

if(expression1) {

 variable = expression2;

}

else {

 variable = expression3;

}

SELECTION

Ternary operator example

int n1 = 32;

int n2 = 47;

int max;

// Largest among n1 and n2

max = (n1 > n2) ? n1 : n2;

// Print the largest number

System.out.println("Maximum is = " + max);

SELECTION

PRACTICE TIME - Worksheet Problem 2

▸ What will the following program print?

int n1 = 32;

int n2 = 47;

System.out.println((n1>n2) ? (n1+n2):(n1-n2));

SELECTION

ANSWER - Worksheet Problem 2

▸ Since the n1>n2 expression evaluates to false, it will
print -15 (i.e. n1-n2)

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Control Flow and Arrays

▸ Selection

▸ Iteration

▸ Branching

▸ Arrays

▸ Looping through arrays

15

ITERATION

while loop

▸ Repeatedly execute a block of code as long as a specific
condition is true.

▸ Basic syntax:

while (condition) {

 // code block to be executed

}

▸ Make sure your condition terminates otherwise you will enter
an infinite loop.

ITERATION

while loop example

int i = 0;

while (i < 3) {

 System.out.println("CS62 will become my favorite class");

 i++;

}

▸ Will print:

CS62 will become my favorite class

CS62 will become my favorite class

CS62 will become my favorite class

ITERATION

do-while loop

▸ Variant of while loop that will execute the block of code once,
before it checks if the condition is true. It will then proceed as
usual.

▸ Basic syntax:

do {

 // code block to be executed

} while(condition);

▸ Make sure your condition terminates otherwise you will enter an
infinite loop.

ITERATION

do-while loop example

int j = 3;

do {

 System.out.println("This is the best semester ever");

 j++;

}

while(j>5);

▸ Will print

This is the best semester ever

even though the condition never got satisfied

ITERATION

for loop

▸ Repeatedly execute a block of code for a specific number of times:

▸ Basic syntax:

for (initialization; termination; increment) {

 // code block to be executed

}

▸ The initialization expression initializes the loop; it's executed once, as the
loop begins.

▸ When the termination expression evaluates to false, the loop terminates.

▸ The increment expression is invoked after each iteration through the loop; it is
perfectly acceptable for this expression to increment or decrement a value.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

ITERATION

for loop example

for(int k=1; k<=5; k++){

 System.out.println("Count is: " + k);

}

▸ Will print

Count is 1

Count is 2

Count is 3

Count is 4

Count is 5

ITERATION

for loop

▸ Notice the variable declaration within the initialization expression

▸ int k=1;

▸ The scope of this variable extends from its declaration to the end of the
block governed by the for statement, so it can be used in the
termination and increment expressions as well.

▸ If the variable that controls a for statement is not needed outside of the
loop, it's best to declare the variable in the initialization expression.

▸ The names i, j, and k are often used in for loops; declaring them within
the initialization expression limits their life span and reduces errors.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Control Flow and Arrays

▸ Selection

▸ Iteration

▸ Branching

▸ Looping through arrays

23

BRANCHING

break

▸ We already saw the break statement that allowed us to
escape a switch statement.

▸ We can also use it to jump out of for and while/do-
while loops.

BRANCHING

break example

for (int l = 0; l < 10; l++) {

 if (l == 4) {

 System.out.println("I am out of here");

 break;

 }

 System.out.println(l);

}

▸ Will print

0
1
2
3
I am out of here

BRANCHING

continue

▸ It allows us to skip the current iteration of a for, while/
do-while loop.

BRANCHING

continue example

for (int x = 0; x < 5; x++) {

 if (x == 3) {

 System.out.println("I am skipping this step");

 continue;

 }

 System.out.println(x);

}

▸ Will print:

0
1
2
I am skipping this step
4

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Control Flow and Arrays

▸ Selection

▸ Iteration

▸ Branching

▸ Arrays

▸ Looping through arrays

28

Array

▸ Simple data structure that can hold a fixed number of
values of the same data type.

▸ The length or storing capacity of an array is established
when the array is created and after creation it is fixed.

▸ Each item in an array is called an element, and each
element is accessed by its numerical index.

▸ Numbering begins at 0. The 9th element, for example,
would therefore be accessed at index 8.

29ARRAYS

Declaring and initializing arrays

▸ Declaring an array requires the use of square brackets next to
the type of the values it will hold. For example:

▸ String[] cars;

▸ int[] numbers;

▸ When we declare it, we can also initialize it with certain values
separated by comma. For example,

▸ String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

▸ int[] numbers = {10, 20, 30, 40};

30ARRAYS

https://www.w3schools.com/java/java_arrays.asp

Accessing the elements of an array

▸ Accessing an array element is done using the square
brackets. E.g.,

▸ String[] cars = {"Volvo", "BMW", "Ford", “Mazda"};

▸ System.out.println(cars[0]);

▸ Will print Volvo

31ARRAYS

https://www.w3schools.com/java/java_arrays.asp

Changing the value of an element

▸ We will use again square brackets to index the element we
want to change. E.g.,

▸ String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

▸ cars[0] = "Toyota";

▸ System.out.println(cars[0]);

▸ Will now print Toyota instead of Volvo.

32ARRAYS

https://www.w3schools.com/java/java_arrays.asp

Array length

▸ We can determine the storing capacity of an array using
the length property. E.g.,

▸ String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

▸ System.out.println(cars.length);

▸ Will print 4

‣ If you request an index that is either negative or larger
than length-1, then you will get an
ArrayIndexOutOfBoundsException.

33ARRAYS

https://www.w3schools.com/java/java_arrays.asp

http://download.oracle.com/javase/6/docs/api/java/lang/ArrayIndexOutOfBoundsException.html

Multi-dimensional arrays

▸ An array of arrays. Each array, will have its own set of curly braces. E.g.,

▸ int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

▸ To access the elements of a multi-dimensional array, you need first to specify the
array and then the element of the array. For example:

▸ System.out.println(myNumbers[1][2]); // Outputs 7

▸ We still count starting at 0!

▸ To change the value of an element in a multi-dimensional array, you have to index it
as above. For example:

▸ myNumbers[1][2] = 9;

▸ System.out.println(myNumbers[1][2]); // Outputs 9 instead of 7

34ARRAYS

https://www.w3schools.com/java/java_arrays.asp

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Control Flow and Arrays

▸ Selection

▸ Iteration

▸ Branching

▸ Arrays

▸ Looping through arrays

35

LOOPING THROUGH ARRAYS

Standard way: Using a for loop and length

▸ Arrays have fixed length so a for loop makes sense. E.g.,

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (int i = 0; i < cars.length; i++) {

 System.out.println(cars[i]);

}

▸ Will print

Volvo

BMW

Ford

Mazda

36

LOOPING THROUGH ARRAYS

For-each loop

▸ A new way of looping through arrays that doesn’t need an iteration counter.

▸ Basic syntax:

for (type variableName : arrayName) {

 ...

}

▸ For example:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (String car : cars) {

 System.out.println(car);

} //works same as before

37

LOOPING THROUGH ARRAYS

PRACTICE TIME - Worksheet Problem 3

▸ Declare and initialize an array of strings with all the classes you are taking this semester.

▸ Remember the word class is a reserved word, you cannot use it to name your
variables.

▸ Write a for loop that loops through each class

▸ If a class is called “CSCI062” you need to print “CSCI062: This is the best class ever, no
need to see more” and break the for loop.

▸ We will use the equals method to compare equality among Strings.

▸ e.g., someString.equals(someOtherString)

▸ Otherwise, if a class is called “CSCI101”, you need to print “CSCI101: New CS
achievement unlocked” and continue to the next iteration.

▸ Otherwise, print the name of the class.

LOOPING THROUGH ARRAYS

ANSWER - Worksheet Problem 3

▸ Here is my attempt. You could have also used a regular for loop instead of a for-each loop.

String[] classes = {"PHYS032", "CSCI101", "ANTH051", "CSCI062", "IMAG002"};

for(String myClass:classes){

 if(myClass.equals(”CSCI062”)){

 System.out.println("CSCI062: This is the best class ever, no need to see more");

 break;

 }

 else if(myClass.equals(“CSCI101”)){

 System.out.println("CSCI101: New CS achievement unlocked");

 continue;

 }

 System.out.println(myClass);

}

LOOPING THROUGH ARRAYS

Lecture 2: Control Flow

▸ Selection

▸ Iteration

▸ Branching

▸ Arrays

▸ Looping through arrays

40

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Control flow: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html

▸ Arrays: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

41

Worksheet
▸ Lecture 2 worksheet

Code
▸ Lecture 2 code

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://cs.pomona.edu/classes/cs62/worksheets/Lecture2_worksheet.pdf
https://github.com/pomonacs622024sp/code/tree/main/Lecture2

