
CS62
DATA STRUCTURES AND ADVANCED PROGRAMMING

1: Introduction and Java Basics

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

Welcome to a new semester! Hopefully you are all here for CS62: “Data Structures and Advanced Programming”. My name is Alexandra Papoutsaki and most students
call me Professor Papoutsaki. My pronouns are she/her/hers. I will be your instructor for the lectures and labs. If you have been registered for the class, you need to also
register for the Friday lab for which attendance is mandatory.

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction and Java Basics

▸ About this course

▸ Getting started

▸ Variables

▸ Print statements

▸ Operators

2

Some slides adopted from Princeton C0S226 course, Algorithms, 4th Edition, Oracle tutorials

Just to familiarize you with how lectures will typically flow, the second slide of each lecture will have an overview of the things we will cover today. So, for example, for
today’s meeting, the first half will be spent on logistics and then we will have a brief introduction to Java. I want to start with About this course.

ABOUT THIS COURSE

Our team

3

Evelyn Hasama
she/her/hers

Maxim Koretsky
he/him/his

Michele Tang
she/her/hers

Emily Wang
she/her/hers

Earn Wonghirundacha
she/her/hers

Alex Wood
he/him/his

Chau Vu
she/her/hers

Gloria Lee
she/her/hers

Camden Le
he/him/his

Stevie Kim
he/him/his

Neil Chulani
he/him/his

Our class has a lot of support both from our class staff and the Department in general. First of all, we have an incredible team of 11(!) TAs that will be assisting with the
grading of the assignments, the Friday labs, and mentor sessions. If you have taken a CS class before, you know how invaluable TAs are to our learning environment.

ABOUT THIS COURSE

Slack Channels

▸ If registered, already invited to cs62-sp2024 channel in
Pomona College Students Slack workspace.

▸ You will find the invitation in the Pomona Students
workspace http://slack.pomona.edu

▸ Department-wide slack workspace:
https://tinyurl.com/PomonaCSSlack

For the class, we will use the cs62-sp2024 slack channel to answer questions off-class and to send announcements. If you are registered in CS62, I have already invited
you to this channel. Please let me know if you are facing any issues with it after class. You can post questions with your name known to everyone or anonymously.

There’s also a departmental slack workspace with multiple channels that can help you socialize with other people in the department.

http://slack.pomona.edu
https://tinyurl.com/PomonaCSSlack

ABOUT THIS COURSE

Who are you?

▸ Name

▸ Year

▸ Programming Experience

▸ CS51P

▸ CS51A

▸ Skipped CS51 because of AP or something else

5

Now I want us all to get a better sense of who’s in the room. Can you please state your name and pronouns if you prefer, the year you are in, and what’s your
programming experience? Did you take CS51A? CS51P? Or did you skip CS51 by taking AP in High School or something else?

ABOUT THIS COURSE

Sakai Survey Due this Friday at midnight

▸ “Getting to know you”

To know you a bit better, I have released a Sakai survey named “getting to know you” on Sakai. Please fill it by this Friday midnight.

ABOUT THIS COURSE

What is CS62?

▸ Beginner to intermediate-level course

▸ Data structures: Emphasis on how to organize data in a
computer based on problem needs

▸ Advanced Programming: Emphasis on how to write
efficient algorithms for modern applications following the
Object-Oriented Programming (OOP) paradigm

7

CS62 is at the cusp of a beginner to intermediate level course. You have already taken some form of programming course either here at Pomona or before and CS54 has
exposed you to functional programming and discrete math. It might be already evident from the title: CS62 has multiple missions with the primary being to introduce you
to data structures but also to build your programming skills so that you learn how to write large, reliable programs composed from reusable pieces. Throughout this
semester, we will be emphasizing the development of clear, modular programs that are easy to read, debug, verify, analyze, and modify

By the end of this course you will…

▸ Be familiar with the most commonly used data structures
and the time complexity of common operations they
support.

▸ Be able to determine which data structure is appropriate
to use based on the time and memory needs of your
application.

▸ Be a more confident programmer, comfortable in reading
and writing Java code, and familiar with basic Object
Oriented Programming principles.

8ABOUT THIS COURSE

There are three main learning goals of this course: 1) You will become familiar with the most commonly used data structures and the time complexity of common
operations they support. 2) You will be able to determine which data structure is appropriate to use based on the time and memory needs of your application. 3) You will
be a more confident programmer, comfortable in reading and writing high quality Java code, and familiar with basic object oriented programming principles.

The advanced programming side of CS62

9

▸ In contrast to CS51, labs and assignments will typically be different.

▸ Labs are shorter and deliverables are due Friday midnight.

▸ Assignments are week- or two weeks-long, due on Thursday midnight.

▸ Some assignments will be partner assignments.

▸ Labs will mostly teach you tools:

▸ VS Code, Debugger, Unit testing, git, CLI.

▸ Assignments will be deliberately vague and will be using appropriate data structures to
solve interesting problems.

▸ Realistically, no one will hire you and give you the steps to solve a problem.

▸ But we are here to help you understand how to approach problems!

ABOUT THIS COURSE

The second half of the course title refers to advanced programming which will be achieved through labs and assignments. In contrast to what happened in CS51, labs
and assignments will be typically different. The lab this Friday is the exception. Labs are shorter and any deliverables are typically due the same day, by midnight.
Assignments in contrast are opportunities to explore bigger problems and will be typically due every week, on Thursday midnight. In the lab, we will learn useful tools
that will make you stronger programmers, tools that are universally used by software engineers regardless of the language: command line, IDEs, debugger, unit testing,
git. In contrast, in the assignments you will be using data structures to solve interesting problems. I have to tell you that the assignments are often deliberately vague. In
CS51 you might have been used to be given a lot of guidance. We will still guide you but we will also encourage you to explore your own approaches when writing your
programs. It’s a good idea to remember that we are at a place of growth. Realistically, no one will hire you and give you the steps you need to solve a problem. Having
said that, we are here to help yo understand how to approach problems and build transferrable skills.

How can I succeed in CS62?

▸ Sleep well the night before, eat, come to class, be on time

▸ Take notes, participate, fill the worksheet, ask questions, don’t stay confused

▸ Review slides and do the assigned reading/problems after each lecture

▸ Start the assignments early

▸ Use the tools we learn in the lab (e.g., Debugger)

▸ Practice writing code on paper

▸ Learn how to read and write documentation

▸ Come to office hours/mentor sessions

▸ But ask for help after you have tried solving a problem by yourself

▸ Did I say start early?

10ABOUT THIS COURSE

Here’s a list of things that former students, TAs, and faculty came up with on how you can succeed in CS62.

Sleep well the night before, have something to eat, come to class, be on time

Take notes, participate, fill the worksheet, ask questions, don’t stay confused

Review slides and do the assigned reading/problems after each lecture

Start the assignments early

Use the tools we learn in the lab (e.g., Debugger)

Practice writing code on paper

Learn how to read and write documentation

Come to office hours/mentor sessions

But ask for help after you have tried solving a problem by yourself

Did I say start early?

How can I be a good citizen in CS062?

▸ Use laptops/tablets/phones/other fancy electronics only for note taking.

▸ Be mindful when in office hours/mentor sessions of other students waiting for help.

▸ Come with specific questions!

▸ TAs are students, too. Respect their time outside mentor sessions.

▸ We encourage collaboration but we want you to submit your own code.

▸ We monitor assignments for plagiarism. This includes using code from other students,
websites, or tools like chatGPT.

▸ Academic dishonesty cases are reported to the Dean of Students. Assignments will
receive a zero. Exams will receive a zero and half a grade is reduced. Second
infraction leads to failure of the course.

▸ If unsure about what’s allowed, talk to me.

11ABOUT THIS COURSE

Beyond how you can succeed as an individual, I hope we can all agree that it’s often the entire class dynamic that can make a class unforgettable in a good way. Please
keep these pieces of advice in mind throughout the course.Try to avoid using laptops/tablets/phones/other fancy electronics unless you use them for note taking

Be mindful when in office hours/mentor sessions of other students waiting for help.

Come with specific questions

TAs are students too. Respect their time outside mentor sessions.

We encourage collaboration but we want you to submit your own code. This is something that we will be very strict. We will be monitoring your submissions and exams
and academic violations can lead to quite strict penalties. Please be careful and avoid copying code from classmates, websites, or even tools like chatGPT.

What will my average week look like?

▸ MW lectures.

▸ Monday quizzes, starting next week.

▸ Weekly assignments due on Thursday midnight.

▸ Friday labs (mandatory) due on Friday midnight.

BUDGET AT LEAST 8 HOURS OUTSIDE THE CLASSROOM

12ABOUT THIS COURSE

CS62 can be a demanding class but it’s tons of fun and it will make you great programmers and expose you to the foundation of our science. Please budget your time
accordingly and consider your physical and mental health when thinking of taking this class along with balancing other demanding classes, jobs, etc. An average week
will look like:

MW lectures.

Monday quizzes starting next week.

Friday labs (mandatory) due on Friday midnight.

Weekly assignments due on Thursday midnight.

Grading summary

▸ Weekly Programming Assignments: 30%

▸ Three free days - can use on one assignment or across different assignments. Let me
know before the deadline if you will take a late day pass.

▸ If group assignment, both partners have to use a free day

▸ Midterm I: 15%

▸ Midterm II: 15%

▸ Final Exam: 25%

▸ Quizzes: 10%

▸ Labs: 5%

▸ No late submissions

13

More information: http://www.cs.pomona.edu/classes/cs62/

ABOUT THIS COURSE

In case you’re wondering, here’s the breakout of the grading.

Weekly Programming Assignments: 30%

You have three free days to use either on one assignment or spread them across different assignments - use wisely

Midterm I: 15% (in lab)

Midterm II: 15% (in lab)

Final Exam: 25%

Quizzes: 10%

Labs: 5%

http://www.cs.pomona.edu/classes/cs62/

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction and Java Basics

▸ About this course

▸ Getting started

▸ Variables

▸ Print statements

▸ Operators

14

Are there any questions? If not, let’s learn (or remember) Java!

GETTING STARTED

Java

15

▸ One of the most popular general-purpose programming languages.

▸ Java code is written in .java files. Each Java file has one Java class which matches the
name of the file.

▸ e.g., Lecture1.java will have a Lecture1 class where we’ll write all of our code.

▸ In order to run a Java program, we will need a special main method.

▸ We will ignore both classes and the main method for the next two lectures.

▸ We will use VS Code as an IDE (Integrated Development Environment).

▸ In contrast to Python, we will use curly braces ({}) instead of tabs to create logical
blocks of code.

▸ Single-line comments follow // and multi-line are enclosed within /**/.

Java is one of the most popular general-purpose programming languages. When we write Java code, we will need to store it in files that end in the extension .java. Each
Java file has one Java class inside it that matches the name of the file. For example, if I have a Lecture1.java file, I am expected to have a Lecture1 class inside it where
all the code will be included. Within our class, we will need to have a special method called main, if we want to be able to run our code. We will ignore both classes and
the main method for the next two lectures, but we will need to have them both to run code even today. In this class, we will write, run, and debug our Java code in the
VS Code IDE, although there are a lot of different integrated development environments out there that support Java.

Some basic things you need to read our first Java file: We will be using curly braces (instead of tabs that we used in Python) to create logical blocks of code. And we will
comment our code using // for single-line comments and /**/ for multi-line comments.

GETTING STARTED

Example Java file Lecture1.java

16

public class Lecture1 {
 public static void main(String[] args) {
 //This is a comment

 /*
 * This is a multi-line comment.
 * So much easier than Python
 */
 }
}

These need to match

This an example of a basic Java program that right now doesn’t do anything. You will notice that I have saved it in a Lecture1.java file and because of that, I need to have
a class Lecture1 inside it. I also have the special method main. Let’s ignore the class and main method for now and look at what happens within the main method. You
will see that I have added single-line and multi-line comments that are for my own sake and will be ignored if I were to run my code.

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction and Java Basics

▸ About this course

▸ Getting started

▸ Variables

▸ Print statements

▸ Operations

17

Let’s now learn how to work with variables in Java. Variables are labeled containers that hold data. They are used to store information to be referenced by name and
manipulated in a computer program. [QUESTION] What types of your variables have you seen before?

VARIABLES

Declaring and initializing variables

18

▸ Java is statically-typed: all variables must first be declared before use:

▸ dataType variableName = value;

▸ For example:

▸ int numberOfCS62Students = 38;

▸ int means it can hold integers, that is positive and negative whole numbers.

▸ The name of the variable is numberOfCS62Students.

▸ = assigns the value on the right to the variable on the left.

▸ The variable is initialized to 38.

▸ I always need to finish a statement in Java using a semi-colon (;).

The Java programming language is statically-typed, which means that all variables must first be declared before they can be used. This involves stating the variable's
type and name. The syntax almost always follows the same pattern data_type variable_name = value;

For example, let’s say I have a variable that holds the number of student in this class. I would write:

int numberOfStudents = 38;

int means that the variable can hold integers, that is positive and negative whole numbers.

The name of the variable is numberOfStudents.

= assigns the value on the right to the variable on the left.

The initial value is 38.

I always need to finish a statement in Java using a semi-colon (;).

VARIABLES

Assigning new values

19

▸ Once a variable is declared, I can reference it elsewhere in the
program and assign to it a new value.

▸ variableName = newValue;

▸ For example:

▸ I could change the number of students to 39, if a new student were
to join:

▸ numberOfCS62Students = 39;

▸ Note that once a variable has been declared, we do not declare again
its type. But don’t forget the semi-colon.

Now that we have declared a variable, we can reference it elsewhere in our code and assign to it a new value. For example, I could change the number of students to 39.
Note that I do not declare again its type, I just write the name of the variable and assign to it a new value (don’t forget the semi-colon).

VARIABLES

Naming conventions

20

▸ Naming variables is very hard. They should be accurately descriptive
and understandable to another reader (and to you, days later).

▸ It should start with a lowercase letter such as id, name.

▸ It should not start with the special characters like &, $,_.

▸ They should be one word. If the name contains multiple words, start it
with the lowercase letter followed by an uppercase letter such as
firstName, lastName.

▸ This is known as camel-case.

▸ Avoid using one-character variables such as x, y, z.

https://www.javatpoint.com/java-naming-conventions

Naming variables is very hard. They should be accurately descriptive and understandable to another reader (and to you, days later).There are some naming conventions
that all Java developers follow when they name their variables:

It should start with a lowercase letter such as id, name.

It should not start with the special characters like &, $,_.

If the name contains multiple words, start it with the lowercase letter followed by an uppercase letter such as firstName, lastName.

This is known as camel-case.

Avoid using one-character variables such as x, y, z.

VARIABLES

PRACTICE TIME - Worksheet Problems 1a-b.

21

▸ Declare a variable that stores the number of CS classes
you have taken before CS62 at Pomona and initialize it to
the appropriate number.

▸ Now assume you access this variable at the end of this
semester. Assign to it the new value that corresponds to
the total number of CS classes you will have taken,
including CS62 (and potentially CS101).

Now let’s practice declaring, initializing, and assigning values to variables. On your worksheet:

Declare a variable that stores the number of CS classes you have taken before CS62 at Pomona and initialize it to the appropriate number.

Now assume you access this variable at the end of this semester. Assign to it the new value that corresponds to the total number of CS classes you will have taken,
including CS62 (and potentially CS101).

VARIABLES

ANSWER - Worksheet Problems 1a-b.

22

▸ You should end up with something like:

▸ int numberOfCSClasses = 2;

▸ numberOfCSClasses = 3;

You should end up with something like:

int numberOfCSClasses = 2;

numberOfCSClasess = 3;

VARIABLES

Primitive data types

23

▸ In addition to int, Java supports in total eight primitive
data types. A primitive type is predefined by Java and is
named by a reserved keyword (that means they have a
special meaning. e.g., I can’t have a variable named int).

▸ The eight primitive data types are:

▸ byte, short, int, long, float, double, boolean,
char.

In addition to int, Java supports in total eight primitive data types. A primitive type is predefined by Java and is named by a reserved keyword (that means they have a
special meaning. e.g., I can’t have a variable named int).

The eight primitive data types are:

byte, short, int, long, float, double, boolean, char.

VARIABLES

Reserved words

24

In case you are wondering, here is a list of the reserved words that have a special meaning.

VARIABLES

Primitive Data Types

25

Type Bits Default Example

byte 8 0 byte yearsOld = 10;

short 16 0 short pixels = 2;

int 32 0 int luckyNumber = 47;
long 64 0L long bigNumber = 4747L;

float 32 0.0f float smallDex = 47.0f;

double 64 0.0 double largeDec = 47.0;

char 16 \u0000' char initial = 'a';

boolean 1 false boolean fun = true;

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Here is a more detailed breakdown of the eight primitive types

byte: The byte data type is an 8-bit integer. It has a minimum value of -128 and a maximum value of 127 (inclusive). The byte data type can be useful for saving memory;
the fact that a variable's range is limited can serve as a form of documentation.

short: The short data type is a 16-bit integer. It has a minimum value of -32,768 and a maximum value of 32,767 (inclusive). As with byte, the same guidelines apply: you
can use a short to save memory in situations where the memory savings actually matters.

int: The int data type is a 32-bit integer, which has a minimum value of -231 and a maximum value of 231-1.

long: The long data type is a 64-bit integer. long has a minimum value of -263 and a maximum value of 263-1. Use this data type when you need a range of values wider
than those provided by int.

float: The float data type is a single-precision 32-bit IEEE 754 floating point. As with the recommendations for byte and short, use a float (instead of double) if you need
to save memory.

double: The double data type is a double-precision 64-bit IEEE 754 floating point. For decimal values, this data type is generally the default choice.

boolean: The boolean data type has only two possible values: true and false. Use this data type for simple flags that track true/false conditions. This data type represents
one bit of information, but its "size" isn't something that's precisely defined.

char: The char data type is a single 16-bit Unicode character. It has a minimum value of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535 inclusive).

The most important primitive data types to know

▸ int - for integers.

▸ e.g., int numberOfCS62Students = 40;

▸ double - for decimal-point numbers.

▸ e.g., double temperatureCelsius = 27.5;

▸ boolean - for the set of values {true, false}.

▸ boolean lovingCS62 = true;

▸ Note that in contrast to Python, true and false are not capitalized.

▸ char - for alphanumeric characters and symbols.

▸ char firstLetter = 'a';

26VARIABLES

But in general, we will mostly use these four:

int - for integers.

double - for decimal-point numbers.

boolean - for the set of values {true, false}.

Note that in contrast to Python, true and false are not capitalized.

char - for alphanumeric characters and symbols.

Strings

▸ Character strings are not primitive data types but are
supported through the String class. Note that String is
capitalized.

▸ We enclose strings in double quotes. For example:

▸ String name = “Alexandra";

▸ Note that single quotes are reserved for the char data
type.

27VARIABLES

You might be wondering what about character strings? Strings are not primitive data types but are supported by Java through the java.lang.String class. Enclosing your
character string within double quotes will automatically create a new String object; for example, String name = “Alexandra”; Note that single quotes are reserved for the
char data type.

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction and Java Basics

▸ About this course

▸ Getting started

▸ Variables

▸ Print statements

▸ Operators

28

So far we have seen how to declare variables and initialize and assign a new value to them. What if we want to print their contents to our screen? Or if we want to print a
message to the screen in general?

Print statements

▸ The method System.out.println() is used to print an
argument that is passed to. For example:

▸ System.out.println("Hello World");

▸ System.out.println(name); //will print
Alexandra

▸ System.out.println(numberOfCS62Students); //
will print 40

▸ Note that in contrast to Python, you do not need to convert
non-string arguments to string, this is done automatically.

29PRINT STATEMENTS

The special print method that we will use is System.out.println() and it prints to the screen any argument we pass to it. For example:

System.out.println("Hello World");

System.out.println(name); //will print Alexandra

System.out.println(numberOfCS62Students); //will print 40

Note that in contrast to Python, you do not need to convert a number to a string

String concatenation

▸ Strings are more commonly concatenated with
the + operator, as in "Hello," + " world" + "!"
which results in "Hello, world!"

▸ The + operator is widely used in print statements, e.g.,

▸ System.out.println("My name is " + name + "
and I will be teaching " +
numberOfCS62Students + " students this
semester");

30PRINT STATEMENTS

You might be wondering what about character strings? Strings are not primitive data types but are supported by Java through the java.lang.String class. Enclosing your
character string within double quotes will automatically create a new String object; for example, String name = “Alexandra”; Note that single quotes are reserved for the
char data type.

PRINT STATEMENTS

PRACTICE TIME - Worksheet Problem 1c

31

▸ Declare and initialize a variable whose type is a primitive
and pass it into a print statement, using string
concatenation at least once.

Let’s practice what we’ve learned so far. Turn into your worksheets and work on 1c. Declare and initialize a variable whose type is a primitive and use it into a print
statement that uses string concatenation at least once.

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction and Java Basics

▸ About this course

▸ Getting started

▸ Variables

▸ Print statements

▸ Operators

32

Now that we’ve learned how to declare and initialize variables, you probably want to know how to do something with them. Learning the operators of the Java
programming language is a good place to start. Operators are special symbols that perform specific operations on one, two, or three operands, and then return a result.

Operator precedence

33OPERATORS

Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr !expr

multiplicative * / %

additive + -

relational < > <= >=

logical AND &&

logical OR ||

ternary ? :

assignment `= += -= *= /= %=

As we explore the operators of the Java programming language, it may be helpful for you to know ahead of time which operators have the highest precedence. The
operators in the following table are listed according to precedence order. The closer to the top of the table an operator appears, the higher its precedence. Operators with
higher precedence are evaluated before operators with relatively lower precedence. Operators on the same line have equal precedence. When operators of equal
precedence appear in the same expression, a rule must govern which is evaluated first. All binary operators except for the assignment operators are evaluated from left
to right; assignment operators are evaluated right to left. Please note that this is not an exhaustive list and there are more operators supported by Java

OPERATORS

The Simple Assignment Operator

34

▸ One of the most common operators that we’ve already
encountered is the simple assignment operator “="; it
assigns the value on its right to the operand on its left:

▸ int age = 19;

▸ int year = 2024;

One of the most common operators that we’ve already encountered is the simple assignment operator “="; it assigns the value on its right to the operand on its left:

 int age = 19;

 int year = 2024;

OPERATORS

Arithmetic Operators

35

▸ Java operators support addition, subtraction,
multiplication, division, and remainder/modulo.

Operator Description

+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator

/ Division operator

% Remainder operator

Java operators support addition, subtraction, multiplication, division, and remainder/modulo and they behave exactly as you’d expect based on your prior math
experience.

PRACTICE TIME - Worksheet Problem 2

36

Assume you are given the following Java code. What would be printed on your screen?

 int result = 1 + 2;

 System.out.println("1 + 2 = " + result);

 int original_result = result;

 result = result - 1;

 System.out.println(original_result + " - 1 = " + result);

 original_result = result;

 result = result * 2;

 System.out.println(original_result + " * 2 = " + result);

 original_result = result;

 result = result / 2;

 System.out.println(original_result + " / 2 = " + result);

 original_result = result;

…

OPERATORS

Let’s look into our worksheets. Assume you are given the following statements. What do you think would be printed in your screen?

ANSWER - Worksheet Problem 2

37

1 + 2 = 3

3 - 1 = 2

2 * 2 = 4

4 / 2 = 2

2 + 8 = 10

10 % 7 = 3

OPERATORS

You should see:

1 + 2 = 3

3 - 1 = 2

2 * 2 = 4

4 / 2 = 2

2 + 8 = 10

10 % 7 = 3

OPERATORS

Other Assignment Operator

38

▸ The assignment operators +=, -=, *=, /=, and %= are a
compound of arithmetic and assignment operators.

▸ They operate by adding/subtracting/multiplying/dividing/
taking the remainder of the current value of the variable
on the left to the value on the right and then assigning the
result to the operand on the left. E.g.,

▸ num1 += num2; means num1 = num1 + num2;

You might also encounter the assignment operators +=, -=, *=, /=, and %= which are a compound of arithmetic and assignment operators. They operate by adding/
subtracting/multiplying/dividing/taking the remainder of the current value of the variable on the left to the value on the right and then assigning the result to the operand
on the left. E.g., num1 += num2; means num1 = num1 + num2;

OPERATORS

Unary Operators

39

▸ Unary operators require only one operand.

Operator Description

+ Unary plus operator; indicates positive value (not necessary to have)

-
Unary minus operator; negates an expression

++
Increment operator; increments a value by 1

-- Decrement operator; decrements a value by 1

! Logical complement operator; inverts the value of a boolean

The unary operators require only one operand; they perform various operations such as incrementing/decrementing a value by one, negating an expression, or inverting
the value of a boolean.

PRACTICE TIME - Worksheet Problem 3

40

Assume you are given the following Java code. What would be printed on your screen?

 int result = +1;

 System.out.println(result);

 result--;

 System.out.println(result);

 result++;

 System.out.println(result);

 result = -result;

 System.out.println(result);

 boolean success = false;

 System.out.println(success);

 System.out.println(!success);

OPERATORS

Let’s look into our worksheets. Assume you are given the following statements. What do you think would be printed in your screen?

ANSWER - Worksheet Problem 3

41

1

0

1

-1

false

true

OPERATORS

You should see

1

0

1

-1

false

true

OPERATORS

Pre vs post-fix operators

42

▸ The increment/decrement operators can be applied before (prefix) or
after (postfix) the operand.

▸ The code result++; and ++result; will both end in result being
incremented by one. The only difference is that the prefix version (+
+result) evaluates to the incremented value, whereas the postfix
version (result++) evaluates to the original value.

▸ If you are just performing a simple increment/decrement, it doesn't
really matter which version you choose. But if you use this operator in
part of a larger expression, the one that you choose may make a
significant difference

The increment/decrement operators can be applied before (prefix) or after (postfix) the operand.

The code result++; and ++result; will both end in result being incremented by one. The only difference is that the prefix version (++result) evaluates to the incremented
value, whereas the postfix version (result++) evaluates to the original value.

If you are just performing a simple increment/decrement, it doesn't really matter which version you choose. But if you use this operator in part of a larger expression, the
one that you choose may make a significant difference

OPERATORS

Pre vs post-fix operators example

43

int i = 3;

i++;

// prints i (4)

System.out.println(i);

++i;

// prints i (5)

System.out.println(i);

// first increments to 6 then prints it (6)

System.out.println(++i);

// first prints i (6) then increments i to 7

System.out.println(i++);

// prints i (7)

System.out.println(i);

Here is an example that showcases how pre and post-fix operators differ.

int i = 3;

i++;

// prints i (4)

System.out.println(i);

++i;	 	 	

// prints i (5)

System.out.println(i);

// first increments to 6 then prints it (6)

System.out.println(++i);

// first prints i (6) then increments i to 7

System.out.println(i++);

// prints i (7)

System.out.println(i);

OPERATORS

Equality and relational operators

44

▸ Determine if one operand is greater than, less than, equal
to, or not equal to another operand

Operator Description

`== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

The equality and relational operators determine if one operand is greater than, less than, equal to, or not equal to another operand. The majority of these operators will
probably look familiar to you as well. Keep in mind that you must use "==", not "=", when testing if two primitive values are equal.

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

OPERATORS

Conditional operators

45

▸ The && and || operators perform Conditional-
AND and Conditional-OR operations on two boolean
expressions

exp1 exp2 exp1 && exp2 exp1 || exp2

`true `true `true `true

`true false false `true

false `true false `true

false false false false

The && and || operators perform Conditional-AND and Conditional-OR operations on two boolean expressionL:

exp1	 exp2	 exp1 && exp2	 exp1 || exp2

true	 true	 true	 true

true	 false 	 false 	 true

false 	 true	 false 	 true

false 	 false 	 false 	 false

OPERATORS

PRACTICE TIME - Worksheet Problem 4

46

Consider the following code snippet:
int i = 10;
int n = i++%5;

a. What are the values of i and n after the code is executed?

b. What are the final values of i and n if instead of using the postfix increment
operator (i++), you use the prefix version (++i)?

Let’s look into our worksheets. Assume you are given the following code snippet.

int i = 10; 
int n = i++%5;

a. What are the values of i and n after the code is executed?

b. What are the final values of i and n if instead of using the postfix increment operator (i++), you use the prefix version (++i))?

ANSWER - Worksheet Problem 4

47

a. i is 11, and n is 0
b. i is 11, and n is 1.

OPERATORS

 
a. i is 11, and n is 0 
b. i is 11, and n is 1.

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction and Java Basics

▸ About this course

▸ Getting started

▸ Variables

▸ Print statements

▸ Operators

48

That will be it for today. As a recap, we discussed this course is about and some logistics about it. Then we saw how to declare, initialize, and change the values of
variables. We saw the eight primitive data types and strings. We learned how to print string messages and the contents of variables. We learned the basic operators that
Java supports. I will see you in lab on Friday where we will set up your computers and ensure than you can all run Java. Don’t forget that next Monday we have our first
quiz which will cover the topics we saw today.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Variables: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

▸ Operators: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

49

Worksheet
▸ Lecture 1 worksheet

Code
▸ Lecture 1 code

If you want to deepen your understanding of what we covered, at the end of each lecture, you will see links to readings and code we saw together in class, as well as a
link to the worksheet of the day.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
https://cs.pomona.edu/classes/cs62/worksheets/Lecture1_worksheet.pdf
https://github.com/pomonacs622024sp/code/tree/main/Lecture1

